Global stability of stage-structured predator-prey models with Beddington-DeAngelis functional response. (English) Zbl 1219.92064

Summary: Two stage-structured predator-prey systems with Beddington-DeAngelis functional response are proposed. The first one is deterministic. The second one takes random perturbations into account. For each system, sufficient conditions for global asymptotic stability are established. Some simulation figures are introduced to support the analytical findings.


92D40 Ecology
34D23 Global stability of solutions to ordinary differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
Full Text: DOI


[1] Skalski, G. T.; Gilliam, J. F., Functional responses with predator interference: viable alternatives to the Holling type II model, Ecology, 82, 3083-3092 (2001)
[2] Hassell, M. P.; Varley, C. C., New inductive population model for insect parasites and its bearing on biological control, Nature, 223, 1133-1137 (1969)
[3] Beddington, J. R., Mutual interference between parasites or predators and its effect on searching efficiency, J Animal Ecol, 44, 331-341 (1975)
[4] DeAngelis, D. L.; Goldsten, R. A.; Neill, R., A model for trophic interaction, Ecology, 56, 881-892 (1975)
[5] Crowley, P. H.; Martin, E. K., Functional response and interference within and between year classes of a dragonfly population, J N Am Benthol Soc, 8, 211-221 (1989)
[6] Liu, S.; Beretta, E., A stage-structured predator-prey model of BeddingtonCDeAngelis type, SIAM J Appl Math, 66, 1101-1129 (2006) · Zbl 1110.34059
[7] Liu, S.; Zhang, J., Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure, J Math Anal Appl, 342, 446-460 (2008) · Zbl 1146.34057
[8] Zhao, M.; Lv, S., Chaos in a three-species food chain model with a Beddington-DeAngelis functional response, Chaos Soliton Fract, 40, 2305-2316 (2009) · Zbl 1198.37139
[9] Zhao, M.; Zhang, L., Permanence and chaos in a host-parasitoid model with prolonged diapause for the host, Commun Nonlinear Sci Numer Simulat, 14, 4197-4203 (2009)
[10] Gakkhar, S.; Negi, K.; Sahani, S. K., Effects of seasonal growth on a ratio-dependent delayed prey-predator system, Commun Nonlinear Sci Numer Simulat, 14, 850-862 (2009) · Zbl 1221.34187
[11] Guo, G.; Wu, J., Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonlinear Anal, 72, 1632-1646 (2010) · Zbl 1180.35528
[12] Nie, H.; Wu, J., Coexistence of an unstirred chemostat model with Beddington-DeAngelis functional response and inhibitor, Nonlinear Anal Real World Appl, 11, 3639-3652 (2010) · Zbl 1203.35128
[13] Wang, W.; Chen, L. S., A predator-prey system with stage-structure for predator, Comput Math Appl, 33, 83-91 (1997)
[14] Wang, W.; Mulone, G.; Salemi, F.; Salone, V., Permanence and stability of a stage-structured predator-prey model, J Math Anal Appl, 262, 499-528 (2001) · Zbl 0997.34069
[15] Xiao, Y. N.; Chen, L. S., Effects of toxicants on a stage-structured population growth model, Appl Math Comput, 123, 63-73 (2001) · Zbl 1017.92044
[16] Xu, R.; Chaplain, M. A.J.; Davidson, F. A., Persistence and global stability of a ratio-dependent predator-prey model with stage structure, Appl Math Comput, 158, 729-744 (2004) · Zbl 1058.92053
[17] Zhang, L.; Zhang, C., Rich dynamic of a stage-structured prey-predator model with cannibalism and periodic attacking rate, Commun Nonlinear Sci Numer Simulat, 15, 4029-4040 (2010) · Zbl 1222.37105
[18] Gard, T. C., Persistence in stochastic food web models, Bull Math Biol, 46, 357-370 (1984) · Zbl 0533.92028
[19] Gard, T. C., Stability for multispecies population models in random environments, Nonlinear Anal, 10, 1411-1419 (1986) · Zbl 0598.92017
[20] May, R. M., Stability and complexity in model ecosystems (2001), Princeton University Press: Princeton University Press NJ
[21] Braumann, C. A., Variable effert harvesting models in random environments: generalization to density-dependent noise intensities, Math Biosci, 177& 178, 229-245 (2002) · Zbl 1003.92027
[22] Mao, X.; Yuan, C.; Zou, J., Stochastic differential delay equations of population dynamics, J Math Anal Appl, 304, 296-320 (2005) · Zbl 1062.92055
[23] Luo, Q.; Mao, X., Stochastic population dynamics under regime switching, J Math Anal Appl, 334, 69-84 (2007) · Zbl 1113.92052
[24] Rudnicki, R.; Pichor, K., Influence of stochastic perturbation on prey-predator systems, Math Biosci, 206 108-119 (2007) · Zbl 1124.92055
[25] Li, X.; Mao, X., Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin Dyn Syst, 24, 523-545 (2009) · Zbl 1161.92048
[26] Zhu, C.; Yin, G., On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal, 71, e1370-e1379 (2009) · Zbl 1238.34059
[27] Liu, M.; Wang, K., Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment, J Theoret Biol, 264, 934-944 (2010) · Zbl 1406.92673
[28] Liu, M.; Wang, K., Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment II, J Theoret Biol, 267, 283-291 (2010) · Zbl 1410.92159
[29] Liu, M.; Wang, K.; Wu, Q., Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull Math Biol (2010)
[30] Liu, M.; Wang, K., Extinction and permanence in a stochastic nonautonomous population system, Appl Math Lett, 23, 1464-1467 (2010) · Zbl 1206.34079
[31] Liu, M.; Wang, K., Persistence and extinction in stochastic non-autonomous logistic systems, J Math Anal Appl, 375, 443-457 (2011) · Zbl 1214.34045
[32] Liu, M.; Wang, K., Global stability of a nonlinear stochastic predator- prey system with Beddington-DeAngelis functional response, Commun Nonlinear Sci Numer Simulat, 16, 1114-1121 (2011) · Zbl 1221.34152
[33] Gourley, S. A.; Kuang, Y., A stage structured predator-prey model and its dependence on through-stage delay and death rate, J Math Biol, 49, 188-200 (2004) · Zbl 1055.92043
[34] Mao, X., Stochastic differential equations and applications (1997), Horwood Publishing: Horwood Publishing Chichester · Zbl 0874.60050
[35] Mao, X., A note on the LaSalle-type theorems for stochastic differential delay equations, J Math Anal Appl, 268, 125-142 (2002) · Zbl 0996.60064
[36] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, Siam Rev, 43, 525-546 (2001) · Zbl 0979.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.