×

Adaptive synchronization of bipartite dynamical networks with distributed delays and nonlinear derivative coupling. (English) Zbl 1219.93051

Summary: This paper investigates the synchronization in a class of bipartite dynamical networks with distributed delays and nonlinear derivative coupling. Based on Lyapunov’s stability theory, some useful synchronization criteria are established for the two coupled bipartite dynamical networks by constructing effective adaptive feedback controllers and update laws. The numerical simulations are provided to illustrate the effectiveness of the theoretical results obtained in this paper.

MSC:

93C40 Adaptive control/observation systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavezf, M.; Hwanga, U.D., Complex networks: structure and dynamics, Phys rep, 424, 4-5, 175-308, (2006) · Zbl 1371.82002
[2] Li, X.; Chen, G.R., Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint, IEEE trans circuits syst I, 50, 11, 1381-1390, (2003) · Zbl 1368.37087
[3] Zhou, J.; Xiang, L.; Liu, Z.R., Global synchronization in general complex delayed dynamical networks and its applications, Physica A, 385, 2, 729-742, (2007)
[4] Wang, X.F.; Chen, G.R., Synchronization in small-world dynamical networks, Int J bifurcat chaos, 12, 1, 187-192, (2002)
[5] Wang, X.F.; Chen, G.R., Synchronization in scale free dynamical networks: robustness and fragility, IEEE trans circuits syst I, 49, 1, 54-62, (2002) · Zbl 1368.93576
[6] Tsai, P.Y.; Fu, J.S.; Chen, G.H., Fault-free longest paths in star networks with conditional link faults, Theor comput sci, 410, 8-10, 766-775, (2009) · Zbl 1162.68004
[7] Han, X.P.; Lu, J.A.; Chen, G.R., Nonlinear integral synchronization of ring networks, Comput math appl, 55, 4, 808-818, (2008) · Zbl 1161.34025
[8] Watts, D.J.; Strogatz, S.H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442, (1998) · Zbl 1368.05139
[9] Newman, M.E.J., Scientific collaboration networks. II. shortest paths, weighted networks, and centrality, Phys rev E, 64, 1, 016132, (2001)
[10] Wang, D.H.; Zhou, L.; D, Z.R., Bipartite producer – consumer networks and the size distribution of firms, Physica A, 363, 2, 359-366, (2006)
[11] Xiao YZ, Xu W, Li XC, Tang SF. Adaptive complete synchronization of chaotic dynamical network with unknown and mismatched parameters. Chaos 2007;17(3): Article ID 033118.
[12] Xu, S.Y.; Yang, Y., Synchronization for a class of complex dynamical networks with time-delay, Commun nonlinear sci numer simul, 14, 8, 3230-3238, (2009) · Zbl 1221.34205
[13] Gu, Y.Q.; Shao, C.; Fu, X.C., Complete synchronization and stability of star-shaped complex networks, Chaos soliton fract, 28, 2, 480-488, (2006) · Zbl 1083.37025
[14] Lu, J.Q.; Cao, J.D., Adaptive synchronization in tree-like dynamical networks, Nonlinear anal: real world appl, 8, 4, 1252-1260, (2007) · Zbl 1125.34031
[15] Jia, Z.; Wang, H.; Wang, J.; Li, Y., The weighted identification of a bipartite-graph complex dynamical network based on adaptive synchronization, Control theor appl, 27, 1, 107-110, (2010)
[16] Li, C.G.; Chen, G.R., Synchronization in general complex dynamical networks with coupling delays, Physica A, 343, 15, 263-278, (2004)
[17] Wang, Q.Y.; Chen, G.R.; Lu, Q.S.; Hao, F., Novel criteria of synchronization stability in complex networks with coupling delays, Physica A, 378, 2, 527-536, (2007)
[18] Wang, L.; Dai, H.P.; Dong, Hi; Shen, Y.H.; Sun, Y.X., Adaptive synchronization of weighted complex dynamical networks with coupling time-varying delays, Phys lett A, 372, 20, 3632-3639, (2008) · Zbl 1220.90041
[19] Ji, D.H.; Park, J.H.; Yoo, W.J.; Won, S.C.; Lee, S.M., Synchronization criterion for lur’e type complex dynamical networks with time-varying delay, Phys lett A, 374, 10, 1218-1227, (2010) · Zbl 1236.05186
[20] Yuan, K., Robust synchronization in arrays of coupled networks with delay and mixed coupling, Neurocomputing, 72, 1026-1031, (2009)
[21] Liu, T.; Zhao, J.; Hill, D.J., Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes, Chaos soliton fract, 40, 3, 1506-1519, (2009) · Zbl 1197.34092
[22] Guo, W.L.; Austin, F.; Chen, S.H., Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling, Commun nonlinear sci numer simul, 15, 6, 1631-1639, (2010) · Zbl 1221.34213
[23] Xu, Y.H.; Zhou, W.N.; Fang, J.A.; Sun, W., Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling, Phys lett A, 374, 15-16, 1673-1677, (2010) · Zbl 1236.05190
[24] Huang, L., Linear algebra in systems and control theory science, (1984), Press Beijing China, pp. 211-214
[25] Sanchez, E.N.; Perez, J.P., Input-to-state stability analysis for dynamic neural networks, IEEE trans circuits syst, 46, 11, 1395-1398, (1999) · Zbl 0956.68133
[26] Rakkiyappan, R.; Balasubramaniam, P.; Lakshmanan, S., Robust stability results for uncertain stochastic neural networks with discrete interval and distributed time-varying delays, Phys lett A, 372, 32, 5290-5298, (2008) · Zbl 1223.92001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.