zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic finite-time boundedness of Markovian jumping neural network with uncertain transition probabilities. (English) Zbl 1219.93143
Summary: The stochastic finite-time boundedness problem is considered for a class of uncertain Markovian jumping neural networks (MJNNs) that possess partially known transition jumping parameters. The transition of the jumping parameters is governed by a finite-state Markov process. By selecting the appropriate stochastic Lyapunov-Krasovskii functional, sufficient conditions of stochastic finite time boundedness of MJNNs are presented and proved. The boundedness criteria are formulated in the form of linear matrix inequalities and the designed algorithms are described as optimization ones. Simulation results illustrate the effectiveness of the developed approaches.

93E15Stochastic stability
60J27Continuous-time Markov processes on discrete state spaces
Full Text: DOI
[1] Li, T.; Guo, L.; Sun, C.: Robust stability for neural networks with time-varying delays and linear fractional uncertainties, Neurocomputing 71, 421-427 (2007)
[2] Liu, Y.; Wang, Z.; Liu, X.: State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays, Phys. lett. A 372, 7145-7155 (2008) · Zbl 1227.92002 · doi:10.1016/j.physleta.2008.10.045
[3] Liang, J.; Wang, Z.; Liu, Y.; Liu, X.: Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances, IEEE trans. Syst. man cybernet. 38, 1073-1083 (2008)
[4] Luan, X.; He, S.; Liu, F.: Neutral network-based robust fault detection for nonlinear jump systems, Chaos solitons fractals 42, 706-766 (2009) · Zbl 1198.93227 · doi:10.1016/j.chaos.2009.02.002
[5] Park, J. H.: Further note on global exponential stability of uncertain cellular neural networks with variable delays, Appl. math. Comput. 188, 850-854 (2007) · Zbl 1126.34376 · doi:10.1016/j.amc.2006.10.036
[6] Shen, Y.; Li, C.: LMI-based finite-time boundedness analysis of neural networks with parametric uncertainties, Neurocomputing 71, 502-507 (2008)
[7] Wang, Z.; Liu, Y.; Liu, X.: On global asymptotic stability of neural networks with discrete and distributed delays, Phys. lett. A 345, 299-308 (2005) · Zbl 05314210
[8] Wang, Z.; Shu, H.; Fang, J.; Liu, X.: Robust stability for stochastic Hopfield neural networks with time delays, Nonlinear anal. Real world appl. 7, 1119-1128 (2006) · Zbl 1122.34065 · doi:10.1016/j.nonrwa.2005.10.004
[9] Wang, Z.; Liu, Y.; Liu, X.: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters, Phys. lett. A 356, 346-352 (2006) · Zbl 1160.37439 · doi:10.1016/j.physleta.2006.03.078
[10] Wang, Z.; Liu, Y.; Fraser, K.; Liu, X.: Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays, Phys. lett. A 354, 288-297 (2006) · Zbl 1181.93068 · doi:10.1016/j.physleta.2006.01.061
[11] Wang, Z.; Liu, Y.; Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays, Neural networks 22, 41-48 (2009)
[12] Yu, W.; Yao, L.: Global robust stability of neural networks with time varying delays, J. comput. Appl. math. 206, 679-687 (2007) · Zbl 1115.37017 · doi:10.1016/j.cam.2006.08.017
[13] Amato, F.; Ariola, M.; Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica 37, 1459-1463 (2001) · Zbl 0983.93060 · doi:10.1016/S0005-1098(01)00087-5
[14] P. Dorato, Short time stability in linear time-varying systems, in: Proceedings of IRE international Convention Record 1961, New York, USA, pp. 83 -- 87.
[15] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994) · Zbl 0816.93004
[16] Amoto, F.; Ariola, M.: Finite-time control of discrete-time linear systems, IEEE trans. Automat. control 50, 724-729 (2005)
[17] Amoto, F.; Ariola, M.; Cosentino, C.: Finite-time stabilization via dynamic output feedback, Automatica 42, 337-342 (2006) · Zbl 1099.93042 · doi:10.1016/j.automatica.2005.09.007
[18] Amato, F.; Ambrosino, R.; Ariola, M.; Cosentino, C.: Finite-time stability of linear time-varying systems with jumps, Automatica 45, 1354-1358 (2009) · Zbl 1162.93375 · doi:10.1016/j.automatica.2008.12.016
[19] He, S.; Liu, F.: Robust finite-time stabilization of uncertain fuzzy jump systems, Int. J. Innovat. comput. Inform. control 6, 3853-3862 (2010)
[20] Feng, X.; Loparo, K. A.; Ji, Y.: Stochastic stability properties of jump linear systems, IEEE trans. Automat. control 37, 38-53 (1992) · Zbl 0747.93079
[21] He, S.; Liu, F.: Unbiased H$\infty $filtering for neutral Markov jump systems, Appl. math. Comput. 206, 175-185 (2008) · Zbl 1152.93052 · doi:10.1016/j.amc.2008.08.046
[22] He, S.; Liu, F.: Fuzzy model-based fault detection for Markov jump systems, Int. J. Robust nonlinear control 19, 1248-1266 (2009) · Zbl 1166.93343 · doi:10.1002/rnc.1380
[23] Ji, Y.; Chizeck, H. J.: Controllability, stability and continuous time Markov jump linear quadratic control, IEEE tran. Autom. control 35, 777-788 (1999) · Zbl 0714.93060 · doi:10.1109/9.57016
[24] Mao, X.: Stability of stochastic differential equations with Markovian switching, Stoch. process. Appl. 79, 45-67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[25] Mahmoud, M. S.; Al-Sunni, F. M.; Shi, Y.: Mixed H2 - H$\infty $ control of uncertain jumping time-delay systems, J. franklin inst. 345, 536-552 (2008) · Zbl 1167.93024 · doi:10.1016/j.jfranklin.2008.03.001
[26] M.A. Rami, L. El Ghaoui, Robust stabilization of jump linear systems using linear matrix inequalities, in: Proceedings of IFAC Symposium Robust Control Design 1994, Rio de Janeiro, Brazil, pp. 148 -- 151.
[27] Wang, Y.; Xie, L.; De Souza, C. E.: Robust control of a class of uncertain nonlinear systems, Syst. control lett. 19, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[28] Huang, Z.; Li, X.; Mohamad, S.; Lu, Z.: Robust stability analysis of static neural network with S-type distributed delays, Appl. math. Model. 33, 760-769 (2009) · Zbl 1168.34353 · doi:10.1016/j.apm.2007.12.006