zbMATH — the first resource for mathematics

On the existence of homomorphisms between principal series representations of complex semisimple Lie groups. (English) Zbl 1220.22011
The main result of this paper is a neat combinatorial criterion for the existence of homomorphisms between principal series representations of complex semisimple Lie groups and a similar statement for twisted Verma modules over semisimple complex finite dimensional Lie algebras. The criterion is formulated in terms of the combinatorics of weights and the action of the Weyl group. Along the way the author also obtains several interesting vanishing results for the cohomology of principal series representations and twisted Verma modules.

22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
22E46 Semisimple Lie groups and their representations
Full Text: DOI arXiv
[1] Andersen, H.H.; Lauritzen, N., Twisted Verma modules, (), 1-26 · Zbl 1079.17002
[2] Arkhipov, S., Algebraic construction of contragradient quasi-Verma modules in positive characteristic, (), 27-68 · Zbl 1096.17003
[3] Bernstein, J.N.; Gel’fand, S.I., Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compos. math., 41, 2, 245-285, (1980) · Zbl 0445.17006
[4] Bernšteĭn, I.N.; Gel’fand, I.M.; Gel’fand, S.I., Structure of representations that are generated by vectors of higher weight, Funktsional. anal. i prilozhen., 5, 1, 1-9, (1971) · Zbl 0246.17008
[5] Bernšteĭn, I.N.; Gel’fand, I.M.; Gel’fand, S.I., A certain category of \(\mathfrak{g}\)-modules, Funktsional. anal. i prilozhen., 10, 2, 1-8, (1976) · Zbl 0246.17008
[6] Duflo, M., Représentations irréductibles des groupes semi-simples complexes, (), 26-88 · Zbl 0315.22008
[7] Duflo, M., Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple, Ann. of math. (2), 105, 1, 107-120, (1977) · Zbl 0346.17011
[8] Humphreys, J.E., Representations of semisimple Lie algebras in the BGG category \(\mathcal{O}\), Grad. stud. math., vol. 94, (2008), American Mathematical Society Providence, RI · Zbl 1177.17001
[9] Irving, R., Shuffled Verma modules and principal series modules over complex semisimple Lie algebras, J. lond. math. soc. (2), 48, 2, 263-277, (1993) · Zbl 0801.17007
[10] Jantzen, J.C., Moduln mit einem höchsten gewicht, Lecture notes in math., vol. 750, (1979), Springer Berlin · Zbl 0426.17001
[11] Joseph, A., The enright functor on the Bernstein-Gel’fand-Gel’fand category \(\mathcal{O}\), Invent. math., 67, 3, 423-445, (1982) · Zbl 0502.17006
[12] Joseph, A., Completion functors in the \(\mathcal{O}\) category, (), 80-106
[13] Mazorchuk, V.; Stroppel, C., Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module, Trans. amer. math. soc., 357, 7, 2939-2973, (2005), (electronic) · Zbl 1095.17001
[14] Soergel, W., Équivalences de certaines catégories de \(\mathfrak{g}\)-modules, C. R. acad. sci. Paris Sér. I math., 303, 15, 725-728, (1986) · Zbl 0623.17005
[15] Verma, D.-N., Structure of certain induced representations of complex semisimple Lie algebras, Bull. amer. math. soc., 74, 160-166, (1968) · Zbl 0157.07604
[16] Želobenko, D.P., Elementary representations of a semisimple complex Lie group, (), 707-722 · Zbl 0311.22016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.