Synchronization of weighted networks and complex synchronized regions. (English) Zbl 1220.34074

Summary: Since the Laplacian matrices of weighted networks usually have complex eigenvalues, the problem of complex synchronized regions should be investigated carefully. The present Letter addresses this important problem by converting it to a matrix stability problem with respect to a complex parameter, which gives rise to several types of complex synchronized regions, including bounded, unbounded, disconnected, and empty regions. Because of the existence of disconnected synchronized regions, the convexity characteristic of stability for matrix pencils is further discussed. Then, some efficient methods for designing local feedback controllers and inner-linking matrices to enlarge the synchronized regions are developed and analyzed. Finally, a weighted network of smooth Chua’s circuits is presented as an example for illustration.


34D06 Synchronization of solutions to ordinary differential equations
05C82 Small world graphs, complex networks (graph-theoretic aspects)
94B10 Convolutional codes
94C15 Applications of graph theory to circuits and networks
93B52 Feedback control
Full Text: DOI


[1] Barahona, M.; Pecora, L. M., Phys. Rev. Lett., 89, 054101 (2002)
[2] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U., Phys. Rep., 424, 175 (2006)
[3] Kocarev, L.; Amato, P., Chaos, 15, 024101 (2005)
[4] Wang, X. F.; Chen, G. R., IEEE Trans. Circuits Syst.-I, 49, 54 (2002)
[5] Watts, D. J.; Strogatz, S. H., Nature, 393, 440 (1998)
[6] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 80, 2109 (1998)
[7] Belykh, I. V.; Lange, E.; Hasler, M., Phys. Rev. Lett., 94, 188101 (2005)
[8] Wu, C. W., Phys. Lett. A, 346, 281 (2005)
[9] Zhao, M.; Zhou, T.; Wang, B. H.; Yan, G.; Yang, H. J.; Bai, W. J., Physica A, 371, 773 (2006)
[10] Stefanski, A.; Perlikowski, P.; Kapitaniak, T., Phys. Rev. E, 75, 016210 (2007)
[11] Liu, C.; Duan, Z. S.; Chen, G. R.; Huang, L., Physica A, 386, 531 (2007)
[12] Duan, Z. S.; Chen, G. R.; Huang, L.
[13] Zhou, C. S.; Kurths, J., Phys. Rev. Lett., 96, 164102 (2006)
[14] Nishikawa, T.; Motter, A. E., Physica D, 224, 77 (2006)
[15] Lü, J. H.; Yu, X. H.; Chen, G. R.; Cheng, D. Z., IEEE Trans. Circuits Syst.-I, 51, 787 (2004)
[16] Parks, P. C.; Hahn, V., Stability Theory (1992), Prentice Hall · Zbl 0757.34041
[17] Wang, Q. Y.; Chen, G. R.; Lu, Q. S.; Hao, F., Physica A, 378, 527 (2007)
[18] Shorten, R. N.; Narendra, K. S., IEEE Trans. Automat. Control, 48, 618 (2003)
[19] Zhou, K.; Doyle, J. C.; Glover, K., Robust and Optimal Control (1996), Prentice Hall · Zbl 0999.49500
[20] Peaucelle, D.; Arzelier, D.; Bachelier, D.; Bermussou, J., Syst. Control Lett., 40, 21 (2000)
[21] Duan, Z. S.; Zhang, J. X.; Zhang, C. S.; Mosca, E., Automatica, 42, 1919 (2006)
[22] Duan, Z. S.; Chen, G. R.; Huang, L., Phys. Rev. E, 76, 056103 (2007)
[23] Duan, Z. S.; Huang, L.; Wang, L.; Wang, J. Z., Syst. Control Lett., 52, 263 (2004)
[24] Jiang, G. P.; Tang, W. K.S.; Chen, G. R., IEEE Trans. Circuits Syst.-I, 53, 2739 (2006)
[25] Iwasaki, T.; Skelton, R. E., Automatica, 30, 1307 (1994)
[26] Tsuneda, A., Int. J. Bifur. Chaos, 15, 1 (2005)
[27] Fujisaka, H.; Yamada, T., Prog. Theor. Phys., 69, 32 (1983)
[28] Stefanski, A.; Kapitaniak, T., Phys. Lett. A, 210, 279 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.