zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of weighted networks and complex synchronized regions. (English) Zbl 1220.34074
Summary: Since the Laplacian matrices of weighted networks usually have complex eigenvalues, the problem of complex synchronized regions should be investigated carefully. The present Letter addresses this important problem by converting it to a matrix stability problem with respect to a complex parameter, which gives rise to several types of complex synchronized regions, including bounded, unbounded, disconnected, and empty regions. Because of the existence of disconnected synchronized regions, the convexity characteristic of stability for matrix pencils is further discussed. Then, some efficient methods for designing local feedback controllers and inner-linking matrices to enlarge the synchronized regions are developed and analyzed. Finally, a weighted network of smooth Chua’s circuits is presented as an example for illustration.

05C82Small world graphs, complex networks (graph theory)
94B10Convolutional codes
94C15Applications of graph theory to circuits and networks
93B52Feedback control
Full Text: DOI
[1] Barahona, M.; Pecora, L. M.: Phys. rev. Lett.. 89, 054101 (2002)
[2] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U.: Phys. rep.. 424, 175 (2006)
[3] Kocarev, L.; Amato, P.: Chaos. 15, 024101 (2005)
[4] Wang, X. F.; Chen, G. R.: IEEE trans. Circuits syst.-I. 49, 54 (2002)
[5] Watts, D. J.; Strogatz, S. H.: Nature. 393, 440 (1998)
[6] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 80, 2109 (1998)
[7] Belykh, I. V.; Lange, E.; Hasler, M.: Phys. rev. Lett.. 94, 188101 (2005)
[8] Wu, C. W.: Phys. lett. A. 346, 281 (2005)
[9] Zhao, M.; Zhou, T.; Wang, B. H.; Yan, G.; Yang, H. J.; Bai, W. J.: Physica A. 371, 773 (2006)
[10] Stefanski, A.; Perlikowski, P.; Kapitaniak, T.: Phys. rev. E. 75, 016210 (2007)
[11] Liu, C.; Duan, Z. S.; Chen, G. R.; Huang, L.: Physica A. 386, 531 (2007)
[12] Duan, Z. S.; Chen, G. R.; Huang, L.:
[13] Zhou, C. S.; Kurths, J.: Phys. rev. Lett.. 96, 164102 (2006)
[14] Nishikawa, T.; Motter, A. E.: Physica D. 224, 77 (2006)
[15] Lü, J. H.; Yu, X. H.; Chen, G. R.; Cheng, D. Z.: IEEE trans. Circuits syst.-I. 51, 787 (2004)
[16] Parks, P. C.; Hahn, V.: Stability theory. (1992)
[17] Wang, Q. Y.; Chen, G. R.; Lu, Q. S.; Hao, F.: Physica A. 378, 527 (2007)
[18] Shorten, R. N.; Narendra, K. S.: IEEE trans. Automat. control. 48, 618 (2003)
[19] Zhou, K.; Doyle, J. C.; Glover, K.: Robust and optimal control. (1996) · Zbl 0999.49500
[20] Peaucelle, D.; Arzelier, D.; Bachelier, D.; Bermussou, J.: Syst. control lett.. 40, 21 (2000)
[21] Duan, Z. S.; Zhang, J. X.; Zhang, C. S.; Mosca, E.: Automatica. 42, 1919 (2006)
[22] Duan, Z. S.; Chen, G. R.; Huang, L.: Phys. rev. E. 76, 056103 (2007)
[23] Duan, Z. S.; Huang, L.; Wang, L.; Wang, J. Z.: Syst. control lett.. 52, 263 (2004)
[24] Jiang, G. P.; Tang, W. K. S.; Chen, G. R.: IEEE trans. Circuits syst.-I. 53, 2739 (2006)
[25] Iwasaki, T.; Skelton, R. E.: Automatica. 30, 1307 (1994)
[26] Tsuneda, A.: Int. J. Bifur. chaos. 15, 1 (2005)
[27] Fujisaka, H.; Yamada, T.: Prog. theor. Phys.. 69, 32 (1983)
[28] Stefanski, A.; Kapitaniak, T.: Phys. lett. A. 210, 279 (1996)