Verchota, Gregory C. Nonvariational layer potentials with respect to Hölder continuous vector fields. (English) Zbl 1220.35034 Rev. Mat. Iberoam. 23, No. 1, 201-212 (2007). Summary: Nontangential a.e. vanishing of the oblique derivative of a harmonic function with respect to a Hölder continuous vector field on a Lipschitz boundary is shown to imply that the harmonic function is constant. Cited in 2 Documents MSC: 35J25 Boundary value problems for second-order elliptic equations 31B10 Integral representations, integral operators, integral equations methods in higher dimensions Keywords:oblique derivative; Lipschitz domain; uniqueness × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML References: [1] Calderón, A. P.: Boundary value problems for the Laplace equation in Lipschitzian domains. In Recent progress in Fourier analysis (El Escorial, 1983) , 33-48. North-Holland Math. Stud. 111 . North-Holland, Amsterdam, 1985. · Zbl 0608.31001 [2] Coifman, R. R., McIntosh, A. and Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur \(L^2\) pour les courbes lipschitziennes. Ann. of Math. (2) 116 (1982), no. 2, 361-387. JSTOR: · Zbl 0497.42012 · doi:10.2307/2007065 [3] Dahlberg, B. E. J.: Estimates of harmonic measure. Arch. Rational Mech. Anal. 65 (1977), no. 3, 275-288. · Zbl 0406.28009 · doi:10.1007/BF00280445 [4] Dahlberg, B. E. J.: On the Poisson integral for Lipschitz and \(C^1\)-domains. Studia Math. 66 (1979), no. 1, 13-24. · Zbl 0422.31008 [5] Dahlberg, B. E. J.: Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain. Studia Math. 67 (1980), no. 3, 297-314. · Zbl 0449.31002 [6] Dahlberg, B. E. J., and Kenig, C. E.: Hardy spaces and the Neumann problem in \(L^ p\) for Laplace’s equation in Lipschitz domains. Ann. of Math. (2) 125 (1987), no. 3, 437-465. JSTOR: · Zbl 0658.35027 · doi:10.2307/1971407 [7] Fabes, E. B., Jodeit, M. Jr. and Rivière, N. M.: Potential techniques for boundary value problems on \(C^1\)-domains. Acta Math. 141 (1978), no. 3-4, 165-186. · Zbl 0402.31009 · doi:10.1007/BF02545747 [8] Fefferman, C. and Stein, E. M.: \(H\spp\) spaces of several variables. Acta Math. 129 (1972), no. 3-4, 137-193. · Zbl 0257.46078 · doi:10.1007/BF02392215 [9] Hunt, R. A. and Wheeden, R. L.: On the boundary values of harmonic functions. Trans. Amer. Math. Soc. 132 (1968), 307-322. · Zbl 0159.40501 · doi:10.2307/1994842 [10] Jerison, D. S. and Kenig, C. E.: Boundary value problems on Lipschitz domains. In Studies in partial differential equations , 1-68. MAA Stud. Math. 23 . Math. Assoc. America, Washington, DC, 1982. · Zbl 0529.31007 [11] Kenig, C. E. and Pipher, J.: The oblique derivative problem on Lipschitz domains with \(L^ p\) data. Amer. J. Math. 110 (1988), no. 4, 715-737. JSTOR: · Zbl 0676.35019 · doi:10.2307/2374647 [12] Nadirashvili, N. S.: On the question of the uniqueness of the solution of the second boundary value problem for second-order elliptic equations. Mat. Sb. (N.S.) 122(164) (1983), no. 3, 341-359. · Zbl 0563.35026 [13] Stein, E. M.: Singular integrals and differentiability properties of functions . Princeton Mathematical Series 30 . Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501 [14] Verchota, G. C.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59 (1984), no. 3, 572-611. · Zbl 0589.31005 · doi:10.1016/0022-1236(84)90066-1 [15] Verchota, G. C.: The biharmonic Neumann problem in Lipschitz domains. Acta. Math. 194 (2005), 217-279. · Zbl 1216.35021 · doi:10.1007/BF02393222 [16] Verchota, G. C.: Boundary coercivity and the Neumann problem for certain 4th order linear partial differential operators. In preparation. · Zbl 1183.47042 [17] Verchota, G. C.: Counterexamples and uniqueness for \(L^p(\partial\Omega)\) oblique derivative problems. To appear in J. Funct. Anal. (2007). doi:10.1016/j.jfa.2007.01.001. · Zbl 1136.35023 · doi:10.1016/j.jfa.2007.01.001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.