zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust synchronization of Sprott circuits using sliding mode control. (English) Zbl 1220.37081
Summary: We present a robust algorithm to synchronize, under the master/slave configuration, a class of piecewise linear chaotic systems known as Sprott circuits. The synchronization objective is to obtain identical synchronization between the master and slave systems in spite of the existence of external perturbations and parametric variations. The sliding control technique is used to design the coupling signal. This discontinuous controller renders the closed loop system robust with respect to matched bounded disturbances and to terms produced by parametric variations. The performance of the proposed controlled synchronization is illustrated numerically and experimentally.

37N35Dynamical systems in control
93D99Stability of control systems
Full Text: DOI
[1] Lerescu, A. I.; Constandache, N.; Oancea, S.; Grosu, I.: Collection of master-slave synchronized chaotic systems. Chaos, solitons & fractals 23, 599-604 (2004) · Zbl 1096.93016
[2] Andrievsky BR, Fradkov AL. Adaptive synchronization in presence of noise with application to telecommunications. In Proceedings of the European Control Conference, Porto, 2001. p. 2953-7.
[3] Dong, S.; Mills, J. K.: Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE trans robotics autom 18, No. 4, 498-510 (2002)
[4] Bai, Er-Wei; Lonngren, Karl E.; Sprott, J. C.: On the synchronization of a class of electronic circuits that exhibit chaos. Chaos, solitons & fractals 13, 1515-1521 (2002) · Zbl 1005.34041
[5] Guo, P. J.; Wallace, K. S.: A global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach. Int J bifurcat chaos 12, No. 10, 2239-2253 (2002) · Zbl 1052.34053
[6] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[7] Sprott, J. C.: A new class of chaotic circuits. Phys lett A 266, 19-23 (2000)
[8] Sarasola, C.; Torrealdea, F. J.; D’anjou, A.; Moujahid, A.; Graña, M.: Feedback synchronization of chaotic systems. Int J bifurcat chaos 13, No. 1, 177-191 (2003) · Zbl 1056.37038
[9] Yang, T.; Shao, H. H.: Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design. Phys rev E 65, 046210 (2002)
[10] Utkin, V. I.: Sliding modes in control and optimization. (1992) · Zbl 0748.93044