×

Hyers-Ulam stability of power series equations. (English) Zbl 1220.39027

Summary: We prove the Hyers-Ulam stability of power series equation \(\sum^{\infty}_{n=0} a_nx^n = 0\), where \(a_n\) for \(n = 0, 1, 2, 3, \dots\) can be real or complex.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B22 Functional equations for real functions
39B32 Functional equations for complex functions

References:

[1] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience, New York, NY, USA, 1960. · Zbl 0086.24101
[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[3] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. · Zbl 0398.47040 · doi:10.2307/2042795
[4] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Journal of Functional Analysis, vol. 46, no. 1, pp. 126-130, 1982. · Zbl 0482.47033 · doi:10.1016/0022-1236(82)90048-9
[5] J. M. Rassias, “On a new approximation of approximately linear mappings by linear mappings,” Discussiones Mathematicae, vol. 7, pp. 193-196, 1985. · Zbl 0592.46004
[6] J. M. Rassias, “Solution of a problem of Ulam,” Journal of Approximation Theory, vol. 57, no. 3, pp. 268-273, 1989. · Zbl 0672.41027 · doi:10.1016/0021-9045(89)90041-5
[7] M. Bavand Savadkouhi, M. E. Gordji, J. M. Rassias, and N. Ghobadipour, “Approximate ternary Jordan derivations on Banach ternary algebras,” Journal of Mathematical Physics, vol. 50, no. 4, Article ID 042303, 9 pages, 2009. · Zbl 1214.46034 · doi:10.1063/1.3093269
[8] M. E. Gordji, S. Kaboli Gharetapeh, J. M. Rassias, and S. Zolfaghari, “Solution and stability of a mixed type additive, quadratic, and cubic functional equation,” Advances in Difference Equations, vol. 2009, Article ID 826130, 17 pages, 2009. · Zbl 1177.39031 · doi:10.1155/2009/826130
[9] M. E. Gordji, J. M. Rassias, and N. Ghobadipour, “Generalized Hyers-Ulam stability of generalized (N,K)-derivations,” Abstract and Applied Analysis, vol. 2009, Article ID 437931, 8 pages, 2009. · Zbl 1177.39032 · doi:10.1155/2009/437931
[10] M. E. Gordji, S. Zolfaghari, J. M. Rassias, and M. B. Savadkouhi, “Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces,” Abstract and Applied Analysis, vol. 2009, Article ID 417473, 14 pages, 2009. · Zbl 1177.39034 · doi:10.1155/2009/417473
[11] Y. Li and L. Hua, “Hyers-Ulam stability of a polynomial equation,” Banach Journal of Mathematical Analysis, vol. 3, no. 2, pp. 86-90, 2009. · Zbl 1192.39022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.