zbMATH — the first resource for mathematics

On the boundedness of a class of rough maximal operators on product spaces. (English) Zbl 1220.42011
The authors study the \(L^p\) boundedness of maximal operators related with classes of singular integrals on product spaces. The main result is the following:
Suppose that \(\{\Omega_j\}\) is a fixed countable subset of \(L^q (\mathbb{S}^{n-1}\times \mathbb{S}^{m-1})\) for some \(1<q\leq \infty\) with \(\| \|\Omega_j\|_{L^q (\mathbb{S}^{n-1}\times \mathbb{S}^{m-1})} \|_{l^{\gamma'}}<\infty\). Assume that \(\Phi\) and \(\Psi\in C^2 ([0,\infty))\) are convex and increasing functions with \(\Phi(0)=\Psi(0)=0.\) Let \(E^{(\gamma)}(\{\Omega_j\})\), \(1\leq \gamma <\infty\), denote the class of all kernels of the form
\[ K(u,v)=\sum_{j} h_j (|u|,|v|)\;\frac{\Omega_j(u,v)}{|u|^{n}|v|^{m}}, \]
\[ \bigg(\int_{0}^{\infty} \int_{0}^{\infty} \sum_{j} |h_j(r,t)|^\gamma \,\frac{dr\,dt}{rt}\bigg)^{1/\gamma}\leq 1; \]
and let
\[ \begin{aligned} T_{K,\Phi,\Psi}f(x,y)&= \text{p.v. }\int_{\mathbb{R}^n\times \mathbb{R}^m}f\bigg(x-\Phi(|u|)\frac{u}{\|u\|},y-\Psi(|v|)\frac{v}{\|v\|}\bigg)K(u,v)\,du\, dv,\\ T_{\Phi,\Psi,\{\Omega_j\}}^{(\gamma)}(f)&= \sup \big\{|T_{K,\Phi,\Psi}f|:K\in E^{(\gamma)}(\{\Omega_j\}) \big\}. \end{aligned} \]
Then the inequality
\[ \|T_{\Phi,\Psi,\{\Omega_j\}}^{(\gamma)}(f)\|_{L^p (\mathbb{R}^{n}\times \mathbb{R}^{m})} \leq C_p \bigg(\frac{q}{q-1}\bigg)^{2/\gamma'}\| \|\Omega_j\|_{L^q (\mathbb{S}^{n-1}\times \mathbb{S}^{m-1})} \|_{l^{\gamma'}}\|f\|_{L^p (\mathbb{R}^{n}\times \mathbb{R}^{m})} \]
holds for \((\alpha\beta\gamma')/(\gamma'\alpha+\alpha\beta-\gamma')<p<\infty\) and \(1\leq \gamma \leq 2\), where \(\alpha=\min(m,n)\) and \(\beta=\max(2,q')\).
By this theorem and by applying an extrapolation method, some new and improved results for maximal operators and singular integrals on product spaces are obtained.

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI Euclid