×

zbMATH — the first resource for mathematics

Varying-coefficient functional linear regression. (English) Zbl 1220.62046
Summary: Functional linear regression analysis aims to model regression relations which include a functional predictor. The analog of the regression parameter vector or matrix in conventional multivariate or multiple-response linear regression models is a regression parameter function in one or two arguments. If, in addition, one has scalar predictors, as is often the case in applications to longitudinal studies, the question arises how to incorporate these into a functional regression model.
We study a varying-coefficient approach where the scalar covariates are modeled as additional arguments of the regression parameter function. This extension of the functional linear regression model is analogous to the extension of conventional linear regression models to varying-coefficient models and shares its advantages, such as increased flexibility; however, the details of this extension are more challenging in the functional case. Our methodology combines smoothing methods with regularization by truncation at a finite number of functional principal components. A practical version is developed and is shown to perform better than functional linear regression for longitudinal data. We investigate the asymptotic properties of varying-coefficient functional linear regression and establish consistency properties.

MSC:
62G08 Nonparametric regression and quantile regression
62H25 Factor analysis and principal components; correspondence analysis
62J05 Linear regression; mixed models
62G20 Asymptotic properties of nonparametric inference
Software:
fda (R)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Besse, P. and Ramsay, J.O. (1986). Principal components analysis of sampled functions., Psychometrika 51 285-311. · Zbl 0623.62048 · doi:10.1007/BF02293986
[2] Cai, T. and Hall, P. (2006). Prediction in functional linear regression., Ann. Statist. 34 2159-2179. · Zbl 1106.62036 · doi:10.1214/009053606000000830
[3] Cardot, H. (2007). Conditional functional principal components analysis., Scand. J. Statist. 34 317-335. · Zbl 1142.62041 · doi:10.1111/j.1467-9469.2006.00521.x
[4] Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model., Statist. Sin. 13 571-591. · Zbl 1050.62041
[5] Cardot, H. and Sarda, P. (2008). Varying-coefficient functional linear regression models., Comm. Statist. Theory Methods 37 3186-3203. · Zbl 1292.62053 · doi:10.1080/03610920802105176
[6] Carey, J.R., Liedo, P., Müller, H.G., Wang, J.L. and Chiou, J.M. (1998). Relationship of age patterns of fecundity to mortality, longevity, and lifetime reproduction in a large cohort of mediterranean fruit fly females., Journals of Gerontology Series A: Biological Sciences and Medical Sciences 53 245-251.
[7] Courant, R. and Hilbert, D. (1953)., Methods of Mathematical Physics . New York: Wiley. · Zbl 0053.02805
[8] Cuevas, A., Febrero, M. and Fraiman, R. (2002). Linear functional regression: The case of fixed design and functional response., Canad. J. Statist. 30 285-300. JSTOR: · Zbl 1012.62039 · doi:10.2307/3315952 · links.jstor.org
[9] Fan, J. and Gijbels, I. (1996)., Local Polynomial Modelling and Its Applications . London: Chapman & Hall. · Zbl 0873.62037
[10] Fan, J., Huang, T. and Li, R. (2007). Analysis of longitudinal data with semiparametric estimation of covariance function., J. Amer. Statist. Assoc. 35 632-641. · Zbl 1172.62323 · doi:10.1198/016214507000000095 · caliban.asa.catchword.org
[11] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with applications to longitudinal data., J. Roy. Statist. Soc. Ser. B 62 303-322. JSTOR: · Zbl 04558573 · doi:10.1111/1467-9868.00233 · links.jstor.org
[12] Hall, P. and Horowitz, J.L. (2007). Methodology and convergence rates for functional linear regression., Ann. Statist. 35 70-91. · Zbl 1114.62048 · doi:10.1214/009053606000000957
[13] Hall, P., Müller, H. and Wang, J. (2006). Properties of principal component methods for functional and longitudinal data analysis., Ann. Statist. 34 1493-1517. · Zbl 1113.62073 · doi:10.1214/009053606000000272
[14] James, G.M., Hastie, T.J. and Sugar, C.A. (2000). Principal component models for sparse functional data., Biometrika 87 587-602. JSTOR: · Zbl 0962.62056 · doi:10.1093/biomet/87.3.587 · links.jstor.org
[15] Liu, B. and Müller, H. (2009). Estimating derivatives for samples of sparsely observed functions, with application to on-line auction dynamics., J. Amer. Statist. Assoc. 104 704-717. · Zbl 1388.62083
[16] Müller, H.G., Carey, J.R., Wu, D., Liedo, P. and Vaupel, J.W. (2001). Reproductive potential predicts longevity of female Mediterranean fruit flies., Proc. Roy. Soc. Ser. B 268 445-450.
[17] Pearson, J.D., Morrell, C.H., Brant, L.J., Landis, P.K. and Fleg, J.L. (1997). Age-associated changes in blood pressure in a longitudinal study of healthy men and women., Journals of Gerontology Series A: Biological Sciences and Medical Sciences , 52 177-183.
[18] Ramsay, J. and Dalzell, C.J. (1991). Some tools for functional data analysis (with discussion)., J. Roy. Statist. Soc. Ser. B 53 539-572. JSTOR: · Zbl 0800.62314 · links.jstor.org
[19] Ramsay, J.O. and Silverman, B.W. (2002)., Applied Functional Data Analysis: Methods and Case Studies . New York: Springer. · Zbl 1011.62002 · doi:10.1007/b98886
[20] Ramsay, J.O. and Silverman, B.W. (2005)., Functional Data Analysis . New York: Springer. · Zbl 1079.62006
[21] Rice, J. and Wu, C. (2001). Nonparametric mixed effects models for unequally sampled noisy curves., Biometrics 57 253-259. JSTOR: · Zbl 1209.62061 · doi:10.1111/j.0006-341X.2001.00253.x · links.jstor.org
[22] Rice, J.A. and Silverman, B.W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves., J. Roy. Statist. Soc. Ser. B 53 233-243. JSTOR: · Zbl 0800.62214 · links.jstor.org
[23] Shock, N.W., Greulich, R.C., Andres, R., Lakatta, E.G., Arenberg, D. and Tobin, J.D. (1984). Normal human aging: The Baltimore longitudinal study of aging. NIH Publication No. 84-2450, U.S. Government Printing Office., Washington, DC.
[24] Silverman, B.W. (1996). Smoothed functional principal components analysis by choice of norm., Ann. Statist. 24 1-24. · Zbl 0853.62044 · doi:10.1214/aos/1033066196
[25] Staniswalis, J.-G. and Lee, J.-J. (1998). Nonparametric regression analysis of longitudinal data., J. Amer. Statist. Assoc. 93 1403-1418. JSTOR: · Zbl 1064.62522 · doi:10.2307/2670055 · links.jstor.org
[26] Wahba, G. (1990)., Spline Models for Observational Data . Philadelphia, PA: Society for Industrial and Applied Mathematics. · Zbl 0813.62001
[27] Yao, F., Müller, H.-G. and Wang, J.-L. (2005a). Functional data analysis for sparse longitudinal data., J. Amer. Statist. Assoc. 100 577-590. · Zbl 1117.62451 · doi:10.1198/016214504000001745 · miranda.asa.catchword.org
[28] Yao, F., Müller, H.-G. and Wang, J.-L. (2005b). Functional linear regression analysis for longitudinal data., Ann. Statist. 33 2873-2903. · Zbl 1084.62096 · doi:10.1214/009053605000000660
[29] Zhang, C.M., Lu, Y.F., Johnstone, T., Oaks, T. and Davidson, R.J. (2008). Efficient modeling and inference for event-related functional fMRI data., Comput. Statist. Data. Anal. 52 4859-4871. · Zbl 1452.62863
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.