×

Nonlinear tube-fitting for the analysis of anatomical and functional structures. (English) Zbl 1220.62135

Summary: We are concerned with the estimation of the exterior surface and interior summaries of tube-shaped anatomical structures. This interest is motivated by two distinct scientific goals, one dealing with the distribution of HIV microbicide in the colon and the other with measuring degradation in white-matter tracts in the brain. Our problem is posed as the estimation of the support of a distribution in three dimensions from a sample from that distribution, possibly measured with error. We propose a novel tube-fitting algorithm to construct such estimators. Further, we conduct a simulation study to aid in the choice of a key parameter of the algorithm, and we test our algorithm with validation study tailored to the motivating data sets. Finally, we apply the tube-fitting algorithm to a colon image produced by single photon emission computed tomography (SPECT) and to a white-matter tract image produced using diffusion tensor imaging (DTI).

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C50 Medical applications (general)
65C60 Computational problems in statistics (MSC2010)
92C55 Biomedical imaging and signal processing

References:

[1] Banfield, J. D. and Raftery, A. E. (1992). Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. J. Amer. Statist. Assoc. 87 7-16.
[2] Basser, P., Mattiello, J. and LeBihan, D. (1994a). Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103 247-254.
[3] Basser, P., Mattiello, J. and LeBihan, D. (1994b). MR diffusion tensor spectroscopy and imaging. Biophys. J. 66 259-267.
[4] Basser, P. and Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111 209-219.
[5] Basser, P., Pajevic, S., Pierpaoli, C. and Duda, J. (2000). In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44 625-632.
[6] Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed. 15 435-455.
[7] Bitter, I., Sato, M., Bender, M., Kaufman, A., Wan, M. and Wax, M. (2000a). Automatic, accurate and robust colon centerline algorithm. Radiology 217 (Suppl. 705) 370.
[8] Bitter, I., Sato, M., Bender, M., McDonnell, K., Kaufman, A. and Wan, M. (2000b). CEASAR: A smooth, accurate and robust centerline extraction algorithm. In Proc. of IEEE Visualisation 2000 45-52. Salt Lake City, UT.
[9] Caffo, B. S., Crainiceanu, C. M., Deng, L. and Hendrix, C. W. (2009). A case study in pharmacologic colon imaging using principal curves in single photon emission computed tomography. J. Amer. Statist. Assoc. 103 1470-1480. · Zbl 1286.62090 · doi:10.1198/016214508000000832
[10] Chang, K. Y., Ghosh, J., Inc, I. and Sunnyvale, C. (2001). A unified model for probabilistic principal surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 23 22-41.
[11] Chaudhuri, P., Khandekar, R., Sethi, D. and Kalra, P. (2004). An efficient central path algorithm for virtual navigation. In Proceedings of the Computer Graphics International (CGI’04) 188-195. IEEE Computer Society, Washington, DC.
[12] Chiou, R., Kaufman, A., Liang, Z., Hong, L. and Achniotou, M. (1998). Interactive path planning for virtual endoscopy. In Proceedings of the IEEE Nuclear Science and Medical Imaging Conference 3 2069-2072. Toronto, ON.
[13] Chiou, R., Kaufman, A., Liang, Z., Hong, L. and Achniotou, M. (1999). An interactive fly-path planning using potential fields and cell decomposition for virtual endoscopy. IEEE Trans. Nuclear Sci. 46 1045-1049.
[14] Chung, M. K., Adluru, N., Lee, J., Lazar, M. and Lainhart, J. (2010). Cosine series representation of 3d curves and its application to white matter fiber bundles in diffusion tensor imaging. Statist. Interface 3 69-80. · Zbl 1245.94016
[15] Cohen, L. and Kimmel, R. (1997). Global minimum for active contour models: A minimal path approach. J. Comput. Vision 24 57-78.
[16] Cohen, E., Riesenfeld, R. F. and Elber, G. (2001). Geometric Modeling With Splines: An Introduction . A.K. Peters, Natick, MA. · Zbl 0980.65016
[17] Deng, L. (2007). Spline-based curve fitting with applications to kinetic imaging. Master’s thesis, Dept. Biostatistics, Johns Hopkins Univ.
[18] Deschamps, T. and Cohen, L. (2001). Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal. 5 281-299.
[19] Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numer. Math. 1 269-271. · Zbl 0092.16002 · doi:10.1007/BF01386390
[20] Hastie, T. J. (1984). Principal curves and surfaces. Technical Report 11. Laboratory for Computational Statistics, Dept. Statistics, Stanford Univ.
[21] Hastie, T. J. and Stuetzle, W. J. (1989). Principal curves. J. Amer. Statist. Assoc. 84 502-516. JSTOR: · Zbl 0679.62048 · doi:10.2307/2289936
[22] Hastie, T. J., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning . Springer, New York. · Zbl 0973.62007
[23] Hendrix, C. W., Cao, Y. J. and Fuchs, E. J. (2009). Topical microbicides to prevent HIV: Clinical drug development challenges. Annu. Rev. Pharmacol. Toxicol. 49 349-375.
[24] Hendrix, C. W., Fuchs, E. J., Macura, K. J., Lee, L. A., Parsons, T. L., Bakshi, R. P., Khan, W. A., Guidos, A., Leal, J. P. and Wahl, R. (2008). Quantitative imaging and sigmoidoscopy to assess distribution of rectal microbicide surrogates. Clin. Pharmacol. Ther. 83 97-105.
[25] Hong, L., Muraki, S., Kaufman, A., Bartz, D. and He, T. (1997). Virtual voyage: Interactive navigation in the human colon. In Proceedings of SIGGRAPH’97 27-34. Los Angeles, CA.
[26] Hudson, H. and Larkin, R. (1994). Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13 601-609.
[27] Jiang, H., van Zijl, P. C., Kim, J., Pearlson, G. D. and Mori, S. (2006). DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Programs Biomed. 81 106-116.
[28] Kegl, B., Krzyzak, A., Linder, T. and Zeger, K. (2000). Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22 281-297.
[29] Kreyszig, E. (1991). Differential Geometry . Dover Publications, New York. · Zbl 0818.47046
[30] LeBihan, D., Mangin, J., Poupon, C. and Clark, C. (2001). Diffusion tensor imaging: Concepts and applications. J. Magn. Reson. Imaging 13 534-546.
[31] Leblanc, M. and Tibshirani, R. (1994). Adaptive principal surfaces. J. Amer. Statist. Assoc. 89 53-64. · Zbl 0795.62057 · doi:10.2307/2291200
[32] McFarland, E., Wang, G., Brink, J., Balfe, D., Heiken, J. and Vannier, M. (1997). Spiral computed tomographic colonography: Determination of the central axis and digital unraveling of the colon. Acad. Radiol. 4 367-373.
[33] Mori, S. and Barker, P. (1999). Diffusion magnetic resonance imaging: Its principle and applications. Anat. Rec. (New Anat.) 257 102-109.
[34] Mori, S., Crain, B. J., Chacko, V. P. and van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45 265-269.
[35] Mori, S. and van Zijl, P. C. (2002). Fiber tracking: Principles and strategies-a technical review. Ann. Neurol. 15 468-480.
[36] Mori, S., Wakana, S., van Zijl, P. C. M. and Nagae-Poetscher, L. M. (2005). MRI Atlas of Human White Matter . Elsevier, Amsterdam.
[37] Reich, D. S., Smith, S. A., Jones, C. K., Zackowski, K. M., van Zijl, P. C., Calabresi, P. A. and Mori, S. (2006). Quantitative characterization of the corticospinal tract at 3T. Am. J. Neuroradiol. 27 2168-2178.
[38] Reich, D. S., Smith, S. A., Zackowski, K. M., Gordon-Lipkin, E. M., Jones, C. K., Farrell, J. A., Mori, S., van Zijl, P. C. and Calabresi, P. A. (2007). Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis. Neuroimage 38 271-279.
[39] Reich, D. S., Zackowski, K. M., Gordon-Lipkin, E. M., Smith, S. A., Chodkowski, B. A., Cutter, G. R. and Calabresi, P. A. (2008). Corticospinal tract abnormalities are associated with weakness in multiple sclerosis. Am. J. Neuroradiol. 29 333-339.
[40] Reich, D. S., Smith, S. A., Gordon-Lipkin, E. M., Ozturk, A., Caffo, B. S., Balcer, L. J. and Calabresi, P. A. (2009). Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch. Neurol. 66 998-1006.
[41] Samara, Y., Fiebich, M., Dachman, A., Doi, K. and Hoffmann, K. R. (1998). Automated centerline tracking of the human colon. In Proceedings of the SPIE Conference on Image Processing 3338 740-746. SPIE, Bellingham, WA.
[42] Samara, Y., Fiebich, M., Dachman, A., Kuniyoshi, J., Doi, K. and Hoffmann, K. R. (1999). Automated calculation of the centering of the human colon on CT images. Acad. Radiol. 6 352-359.
[43] Thorpe, J. A. (1979). Elementary Topics in Differential Geometry . Springer, New York. · Zbl 0404.53001
[44] Woods, R. P., Cherry, S. R. and Mazziotta, J. C. (1992). Rapid automated algorithm for aligning and reslicing PET images. J. Comput. Assist. Tomogr. 16 620-633.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.