Wang, Xia; Dey, Dipak K. Generalized extreme value regression for binary response data: an application to B2B electronic payments system adoption. (English) Zbl 1220.62165 Ann. Appl. Stat. 4, No. 4, 2000-2023 (2010). Summary: In information systems research, a question of particular interest is to interpret and to predict the probability of a firm to adopt a new technology such that market promotions are targeted to only those firms that were more likely to adopt the technology. Typically, there exists significant difference between the observed number of “adopters” and “nonadopters,” which is usually coded as binary response. A critical issue involved in modeling such binary response data is the appropriate choice of link functions in a regression model. We introduce a new flexible skewed link function for modeling binary response data based on the generalized extreme value (GEV) distribution. We show how the proposed GEV links provide more flexible and improved skewed link regression models than the existing skewed links, especially when dealing with imbalance between the observed number of 0’s and 1’s in a data. The flexibility of the proposed model is illustrated through simulated data sets and a billing data set of the electronic payments system adoption from a Fortune 100 company in 2005. Cited in 1 ReviewCited in 39 Documents MSC: 62P30 Applications of statistics in engineering and industry; control charts 62G32 Statistics of extreme values; tail inference 90B60 Marketing, advertising 65C60 Computational problems in statistics (MSC2010) 90B30 Production models Keywords:latent variable; Markov chain Monte Carlo; posterior distribution; skewness Software:ismev; STUKEL PDFBibTeX XMLCite \textit{X. Wang} and \textit{D. K. Dey}, Ann. Appl. Stat. 4, No. 4, 2000--2023 (2010; Zbl 1220.62165) Full Text: DOI arXiv References: [1] Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669-679. · Zbl 0774.62031 · doi:10.2307/2290350 [2] Aranda-Ordaz, F. J. (1981). On two families of transformations to additivity for binary response data. Biometrika 68 357-364. · Zbl 0466.62098 · doi:10.1093/biomet/68.2.357 [3] Arnold, B. and Groeneveld, R. (1995). Measuring skewness with respect to the mode. Amer. Statist. 49 34-38. [4] Bapna, R., Goes, P., Wei, K. K. and Zhang, Z. (2010). A finite mixture logit model to segment and predict electronic payments system adoption. Information Systems Research DOI: . [5] Chakravorti, S. and Davis, E. (2004). An electronic supply chain: Will payments follow. Chicago Federal Letter 206a . [6] Chau, P. and Jim, C. (2002). Adoption of electronic data interchange in small and medium-sized enterprises. Journal of Global Information Management 10 61-86. [7] Chen, M.-H., Dey, D. K. and Shao, Q.-M. (1999). A new skewed link model for dichotomous quantal response data. J. Amer. Statist. Assoc. 94 1172-1186. · Zbl 1072.62655 · doi:10.2307/2669933 [8] Chen, M.-H. and Shao, Q.-M. (2000). Propriety of posterior distribution for dichotomous quantal response models with general link functions. Proc. Amer. Math. Soc. 129 293-302. · Zbl 1008.62027 · doi:10.1090/S0002-9939-00-05513-1 [9] Chib, S. (1995). Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90 1313-1321. · Zbl 0868.62027 · doi:10.2307/2291521 [10] Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings output. J. Amer. Statist. Assoc. 96 270-281. · Zbl 1015.62020 · doi:10.1198/016214501750332848 [11] Chib, S. and Jeliazkov, I. (2006). Inference in semiparameteric dynamic models for binary longitudinal data. J. Amer. Statist. Assoc. 101 685-700. · Zbl 1119.62337 · doi:10.1198/016214505000000871 [12] Coles, S. G. (2001). An Introduction to Statistical Modeling of Extreme Values . Springer, New York. · Zbl 0980.62043 [13] Coles, S., Pericchi, L. R. and Sisson, S. (2003). A fully probabilistic approach to extreme rainfall modeling. Journal of Hydrology 273 35-50. [14] Czado, C. and Santner, T. J. (1992). The effect of link misspecification on binary regression inference. J. Statist. Plann. Inference 33 213-231. · Zbl 0781.62037 · doi:10.1016/0378-3758(92)90069-5 [15] Dahan, E. and Mendelson, H. (2001). An extreme-value model of concept testing. Management Science 47 102-116. [16] Guerrero, V. M. and Johnson, R. A. (1982). Use of the Box-Cox transformation with binary response models. Biometrika 69 309-314. · doi:10.1093/biomet/69.2.309 [17] Gupta, S. and Chintagunta, P. K. (1994). On using demographic variables to determine segment membership in logit mixture models. Journal of Marketing Research 31 128-136. [18] Kamakura, W. A. and Russell, G. (1989). A probabilistic choice model for market segmentation and elasticity structure. Journal of Marketing Research 26 379-390. [19] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773-795. · Zbl 0846.62028 · doi:10.2307/2291091 [20] Kim, S., Chen, M.-H. and Dey, D. K. (2008). Flexible generalized t -link models for binary response data. Biometrika 95 93-106. · Zbl 1437.62513 · doi:10.1093/biomet/asm079 [21] McFadden, D. (1978). Modeling the choice of residential location. In Spatial Interaction Theory and Planning Models (A. Karlqvist, L. Lundqvist, F. Snickars and J. Weibull, eds.) 75-96. North Holland, Amsterdam. [22] Morales, C. F. (2005). Estimation of max-stable processes using Monte Carlo methods with applications to financial risk assessment. Ph.D. thesis, Dept. Statistics and Operations Research, Univ. North Carolina, Chapel Hill. [23] Morgan, B. J. T. (1983). Observations on quantit analysis. Biometrics 39 879-886. · Zbl 0532.62089 · doi:10.2307/2531323 [24] Roberts, S. (2000). Extreme value statistics for novelty detection in biomedical data processing. Science, Measurement and Technology, IEE Proceedings 147 363-367. [25] Sang, H. and Gelfand, A. (2009). Hierarchical modeling for extreme values observed over space and time. Environmental and Ecological Statistics 16 407-426. · doi:10.1007/s10651-007-0078-0 [26] Shmueli, G. and Koppius, O. (2009). The challenge of prediction in information systems research. Robert H. Smith School Research Paper No. RHS 06-058. [27] Smith, R. L. (1985). Maximum likelihood estimation in a class of non-regular cases. Biometrika 72 67-90. · Zbl 0583.62026 · doi:10.1093/biomet/72.1.67 [28] Smith, R. L. (1989). Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone (with discussion). Statist. Sci. 4 367-393. · Zbl 0955.62646 · doi:10.1214/ss/1177012400 [29] Smith, R. L. (2003). Statistics of extremes, with applications in environment, insurance and finance. In Extreme Values in Finance, Telecommunications and the Environment (B. Finkenstadt and H. Rootzen, eds.) 1-78. Chapman and Hall/CRC Press, London. [30] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 64 583-639. · Zbl 1067.62010 · doi:10.1111/1467-9868.00353 [31] Stavins, J. (2003). Perspective on payments: Electronic payments networks benefit banks, businesses, and consumers. Why do so few use them? Regional Review 13 6-9. [32] Stukel, T. (1988). Generalized logistic models. J. Amer. Statist. Assoc. 83 426-431. · doi:10.1080/01621459.1988.10478613 [33] Thompson, M. L., Reynolds, J., Cox, L. H., Guttorp, P. and Sampson, P. D. (2001). A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmospheric Environment 35 617-630. [34] Wang, X. (2010). Supplement to “Generalized extreme value regression for binary response data: An application to B2B electronic payments system adoption.” DOI: . · Zbl 1220.62165 [35] Wedel, M. and DeSarbo, W. (1993). A latent class binomial logit methodology for the analysis of paired comparison choice data: An application reinvestigating the determinants of perceived risk. Decision Sciences 24 1157-1170. [36] Wu, Y., Chen, M.-H. and Dey, D. (2002). On the relationship between links for binary response data. J. Stat. Stud. Special Volume in Honour of Professor Mir Masoom Ali’s 65th Birthday 159-172. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.