Fares, M.; Hesthaven, J. S.; Maday, Y.; Stamm, B. The reduced basis method for the electric field integral equation. (English) Zbl 1220.78045 J. Comput. Phys. 230, No. 14, 5532-5555 (2011). Summary: We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization. Cited in 1 ReviewCited in 20 Documents MSC: 78A45 Diffraction, scattering 78M15 Boundary element methods applied to problems in optics and electromagnetic theory Keywords:reduced basis method; scattering problems; RCS-computations; boundary element method × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Almroth, B. O.; Stern, P.; Brogan, F. A., Automatic choice of global shape functions in structural analysis, AIAA J., 16, 525-528 (1978) [2] Balmes, E., Parametric families of reduced finite element models: theory and applications, Mech. Syst. Signal Process., 10, 4, 381-394 (1996) [3] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339, 9, 667-672 (2004) · Zbl 1061.65118 [4] Barrett, A.; Reddien, G., On the reduced basis method, Z. Angew. Math. Mech., 75, 7, 543-549 (1995) · Zbl 0832.65047 [5] Buffa, A.; Christiansen, S. H., The electric field integral equation on Lipschitz screens: definitions and numerical approximation, Numer. Math., 94, 2, 229-267 (2003), (for thin non-orientable “screens) · Zbl 1027.65188 [6] Buffa, A.; Ciarlet, J., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci., 24, 1, 9-30 (2001) · Zbl 0998.46012 [7] Buffa, A.; Ciarlet, J., On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math. Methods Appl. Sci., 24, 1, 31-48 (2001) · Zbl 0976.46023 [8] Buffa, A.; Costabel, M.; Sheen, D., On traces for H(curl,\(Ω)\) in Lipschitz domains, J. Math. Anal. Appl., 276, 2, 845-867 (2002) · Zbl 1106.35304 [9] Chen, Y.; Hesthaven, J. S.; Maday, Y.; Rodríguez, J., Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations, SIAM J. Sci. Comput., 32, 2, 970-996 (2010) · Zbl 1213.78011 [10] Christiansen, S. H., Discrete Fredholm properties and convergence estimates for the electric field integral equation, Math. Comput., 73, 245, 143-167 (2004), (electronic, C-infinite surfaces) · Zbl 1034.65089 [11] Eftang, J. L.; Patera, A. T.; Ronquist, E. M., An hp” certified reduced basis method for parametrized elliptic partial differential equations, SIAM J. Sci. Comput., 32, 6, 3170-3200 (2010) · Zbl 1228.35097 [12] J.L. Eftang, B. Stamm, Parameter multi-domain “hp” empirical interpolation, NTNU Numerics, preprint 3/2011, Available from: <http://www.math.ntnu.no/preprint/numerics/2011/N3-2011.pdf; J.L. Eftang, B. Stamm, Parameter multi-domain “hp” empirical interpolation, NTNU Numerics, preprint 3/2011, Available from: <http://www.math.ntnu.no/preprint/numerics/2011/N3-2011.pdf [13] A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159, 2004.; A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159, 2004. · Zbl 1059.65103 [14] Fink, J. P.; Rheinboldt, W. C., On the error behavior of the reduced basis technique for nonlinear finite element approximations, Z. Angew. Math. Mech., 63, 1, 21-28 (1983) · Zbl 0533.73071 [15] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 2, 325-348 (1987) · Zbl 0629.65005 [16] Grepl, M. A.; Maday, Y.; Nguyen, N. C.; Patera, A. T., Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, M2AN Math. Model. Numer. Anal., 41, 3, 575-605 (2007) · Zbl 1142.65078 [17] Gunzburger, M. D., A guide to theory, practice, and algorithms, Finite Element Methods for Viscous Incompressible Flows. Finite Element Methods for Viscous Incompressible Flows, Computer Science and Scientific Computing (1989), Academic Press Inc.: Academic Press Inc. Boston, MA · Zbl 0697.76031 [18] Harrington, R., Field Computation by Moment Methods (1968), Macmillan Company: Macmillan Company New York [19] Hiptmair, R.; Schwab, C., Natural boundary element methods for the electric field integral equation on polyhedra, SIAM J. Numer. Anal., 40, 1, 66-86 (2002), (electronic) · Zbl 1010.78014 [20] Huynh, D. B.P.; Rozza, G.; Sen, S.; Patera, A. T., A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C.R. Math. Acad. Sci. Paris, 345, 8, 473-478 (2007) · Zbl 1127.65086 [21] Ito, K.; Ravindran, S. S., A reduced basis method for simulation and control of fluid flows, J. Comput. Phys., 143, 2, 403-425 (1998) · Zbl 0936.76031 [22] Machiels, L.; Maday, Y.; Oliveira, I. B.; Patera, A. T.; Rovas, D. V., Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris Sér. I Math., 331, 2, 153-158 (2000) · Zbl 0960.65063 [23] Maday, Y.; Nguyen, N. C.; Patera, A. T.; Pau, G. S.H., A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Anal., 8, 1, 383-404 (2009) · Zbl 1184.65020 [24] Maday, Y.; Patera, A. T.; Rovas, D. V., A blackbox reduced-basis output bound method for noncoercive linear problems, Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, vol. XIV (Paris, 1997/1998). Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, vol. XIV (Paris, 1997/1998), Stud. Math. Appl., vol. 31 (2002), North-Holland: North-Holland Amsterdam, pp. 533-569 · Zbl 1006.65124 [25] Y. Maday, A.T. Patera, G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations, in: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 437-446, 2002.; Y. Maday, A.T. Patera, G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations, in: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 437-446, 2002. · Zbl 1014.65115 [26] Nguyen, N. C.; Patera, A. T.; Peraire, J., A ‘best points’ interpolation method for efficient approximation of parametrized functions, Int. J. Numer. Methods Eng., 73, 4, 521-543 (2008) · Zbl 1163.65009 [27] Nguyen, N. C.; Veroy, K.; Patera, A. T., Certified real-time solution of parametrized partial differential equations, (Yip, S., Handbook of Materials Modeling (2005), Springer), 1523-1558 [28] Noor, A. K.; Peters, J. M., Reduced basis technique for nonlinear analysis of structures, AIAA J., 45, 172, 487-496 (1980) [29] Peterson, J. S., The reduced basis method for incompressible viscous flow calculations, SIAM J. Sci. Statist. Comput., 10, 4, 777-786 (1989) · Zbl 0672.76034 [30] Porsching, T. A., Estimation of the error in the reduced basis method solution of nonlinear equations, Math. Comput., 45, 172, 487-496 (1985) · Zbl 0586.65040 [31] Prud’homme, C.; Rovas, D.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. Fluid Eng. - T. ASME, 124, 1, 70-80 (2002) [32] Rao, S.; Wilton, D.; Glisson, A., Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 30, 3, 409-418 (1982) [33] P.-A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Applied Mathematical Sciences, Lecture Notes in Math., vol. 606, 1977, pp. 292-315.; P.-A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Applied Mathematical Sciences, Lecture Notes in Math., vol. 606, 1977, pp. 292-315. · Zbl 0362.65089 [34] Rheinboldt, W. C., On the theory and error estimation of the reduced basis method for multi-parameter problems, Nonlinear Anal., 21, 11, 849-858 (1993) · Zbl 0802.65068 [35] G. Rozza, Shape design by optimal flow control and reduced basis techniques: applications to bypass configurations in haemodynamics, Ph.D. Thesis, EPFL, 2005.; G. Rozza, Shape design by optimal flow control and reduced basis techniques: applications to bypass configurations in haemodynamics, Ph.D. Thesis, EPFL, 2005. [36] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics, Arch. Comput. Methods Eng., 15, 3, 229-275 (2008) · Zbl 1304.65251 [37] K. Veroy, Reduced-basis methods applied to problems in elasticity: analysis and applications, Ph.D. Thesis, MIT, June 2003.; K. Veroy, Reduced-basis methods applied to problems in elasticity: analysis and applications, Ph.D. Thesis, MIT, June 2003. [38] Veroy, K.; Prud’homme, C.; Patera, A. T., Reduced-basis approximation of the viscous burgers equation: rigorous a posteriori error bounds, C. R. Acad. Sci. Paris, Série I, 337, 9, 619-624 (2003) · Zbl 1036.65075 [39] K. Veroy, C. Prud’homme, D. Rovas, A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. AIAA, 2003.; K. Veroy, C. Prud’homme, D. Rovas, A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. AIAA, 2003. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.