Zhang, Lie-Hui; Li, Xiao-Ping; Jia, Chun-Sheng Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin-orbit coupling term. (English) Zbl 1220.81101 Phys. Lett., A 372, No. 13, 2201-2207 (2008). Summary: By using the supersymmetric WKB approximation approach and the functional analysis method, we solve approximately the Dirac equation with the Eckart potential for the arbitrary spin-orbit quantum number \(\kappa \). The bound state energy eigenvalues and the associated two-component spinors of the Dirac particles are obtained approximately. Cited in 24 Documents MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 81Q60 Supersymmetry and quantum mechanics 81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory Keywords:Dirac equation; Eckart potential; pseudospin symmetry PDF BibTeX XML Cite \textit{L.-H. Zhang} et al., Phys. Lett., A 372, No. 13, 2201--2207 (2008; Zbl 1220.81101) Full Text: DOI OpenURL References: [1] Arima, A.; Harvey, M.; Shimizu, K., Phys. lett. B, 30, 517, (1969) [2] Hecht, K.T.; Adler, A., Nucl. phys. A, 137, 129, (1969) [3] Bohr, A.; Hamamoto, I.; Mottelson, B.R., Phys. scr., 26, 267, (1982) [4] Dudek, J.; Nazarewicz, W.; Szymanski, Z.; Leander, G.A., Phys. rev. lett., 59, 1405, (1987) [5] Troltenier, D.; Bahri, C.; Draayer, J.P., Nucl. phys. A, 586, 53, (1995) [6] Ginocchio, J.N., Phys. rev. lett., 78, 436, (1997) [7] Ginocchio, J.N., Phys. rev. C, 57, 1167, (1998) [8] Ginocchio, J.N., Phys. rep., 414, 165, (2005) [9] Lisboa, R.; Malheiro, M.; De Castro, A.S.; Alberto, P.; Fiolhais, M., Phys. rev. C, 69, 024319, (2004) [10] Ginocchio, J.N., Phys. rev. lett., 95, 252501, (2005) [11] Gou, J.Y.; Fang, X.Z.; Xu, F.X., Nucl. phys. A, 757, 411, (2005) [12] de Castro, A.S.; Alberto, P.; Lisboa, R.; Malheiro, M., Phys. rev. C, 73, 054309, (2006) [13] Gou, J.Y.; Sheng, Z.Q., Phys. lett. A, 338, 90, (2005) [14] Gou, J.Y.; Han, J.C.; Wang, R.D., Phys. lett. A, 353, 378, (2006) [15] Berkdemir, C., Nucl. phys. A, 770, 32, (2006) [16] Qiang, W.C.; Zhou, R.S.; Gao, Y., J. phys. A: math. theor., 40, 1677, (2007) [17] Bayrak, O.; Boztosun, I., J. phys. A: math. theor., 40, 11119, (2007) [18] Jia, C.S.; Guo, P.; Peng, X.L., J. phys. A: math. gen., 39, 7737, (2006) [19] Jia, C.S.; Liu, J.Y.; He, L.; Sun, L.T., Phys. scr., 75, 388, (2007) [20] Jia, C.S.; Guo, P.; Diao, Y.F.; Yi, L.Z.; Xie, X.J., Eur. phys. J. A, 34, 41, (2007) [21] Eckart, C., Phys. rev., 35, 1303, (1930) [22] Cooper, F.; Khare, A.; Sukhatme, U., Phys. rep., 251, 267, (1995) [23] Weiss, J.J., J. chem. phys., 41, 1120, (1964) [24] Cimas, A.; Aschi, M.; Barrientos, C.; Rayón, V.M.; Sordo, J.A.; Largo, A., Chem. phys. lett., 374, 594, (2003) [25] Jia, C.S.; Zeng, X.L.; Sun, L.T., Phys. lett. A, 294, 185, (2002) [26] Jia, C.S.; Li, Y.; Sun, Y.; Liu, J.Y.; Sun, L.T., Phys. lett. A, 311, 115, (2003) [27] Zou, X.; Yi, L.Z.; Jia, C.S., Phys. lett. A, 346, 54, (2005) [28] Dong, S.H.; Qiang, W.C.; Sun, G.H.; Bezerra, V.B., J. phys. A: math. theor., 40, 10535, (2007) [29] Gonül, B.; Özer, O.; Cancelik, Y.; Kocak, M., Phys. lett. A, 275, 238, (2000) [30] Bayrak, O.; Kocak, G.; Boztosun, I., J. phys. A: math. theor., 40, 11521, (2007) [31] Qiang, W.C.; Dong, S.H., Phys. lett. A, 368, 13, (2007) [32] Gendenshtein, L.E., Sov. phys. JETP lett., 38, 356, (1983) [33] Comtet, A.; Bandrank, A.; Campbell, D.K., Phys. lett. B, 150, 159, (1985) [34] Dong, S.H., Factorization method in quantum mechanics, (2007), Springer/Kluwer Academic Press [35] Hruska, M.; Keung, W.Y.; Sukhatme, U., Phys. rev. A, 55, 3345, (1997) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.