×

A novel approach for solving the Fisher equation using exp-function method. (English) Zbl 1220.83011

Summary: In this Letter, Exp-function method is employed to obtain traveling wave solutions of the Fisher equation. It is shown that, on this example, the Exp-function method is easy to implement and concise method for nonlinear evolution equations in mathematical physics.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
35Q51 Soliton equations
35C07 Traveling wave solutions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Debnath, L., Nonlinear Partial Equations (1997), Birkhauser: Birkhauser Boston · Zbl 0892.35001
[2] Noviko, S.; Manakov, S. V.; Zakharov, V. E., The Inverse Scattering Method (1984), Consultants Bureau: Consultants Bureau New York · Zbl 0598.35002
[3] Hirota, R., J. Phys. Soc. Jpn., 33, 1456 (1972)
[4] Kudryashov, N. A., Phys. Lett. A, 342, 99 (2005) · Zbl 1222.35054
[5] Wazwaz, A. M.; Gorguis, A., Appl. Math. Comput., 159, 609 (2004)
[6] Tan, Y.; Xu, H.; Liao, S.-J., Chaos Solitons Fractals, 31, 462 (2007) · Zbl 1143.35313
[7] He, J. H., Chaos Solitons Fractals, 30, 700 (2006) · Zbl 1141.35448
[8] X.H. Wu, J.H. He, Chaos Solitons Fractals, doi:10.1016/j.chaos.2007.01.024; X.H. Wu, J.H. He, Chaos Solitons Fractals, doi:10.1016/j.chaos.2007.01.024
[9] (Benn) Wu, X. H.; He, J. H., Comput. Math. Appl., 54, 966 (2007)
[10] He, J. H.; Abdou, M. A., Chaos Solitons Fractals, 34, 1421 (2007) · Zbl 1152.35441
[11] S. Zhang, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.11.014; S. Zhang, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.11.014
[12] Zhang, S., Phys. Lett. A, 365, 448 (2007) · Zbl 1203.35255
[13] Zhang, S., Nonlinear Dynam., 52, 11 (2008) · Zbl 1173.35670
[14] Zhang, S., Phys. Lett. A, 371, 65 (2007) · Zbl 1209.65103
[15] Zhang, S., Phys. Lett. A, 372, 1873 (2008)
[16] Abdou, M. A.; Soliman, A. A.; El-Basyony, S. T., Phys. Lett. A, 369, 469 (2007) · Zbl 1209.81091
[17] Wakil, S. A.; Madkour, M. A.; Abdou, M. A., Phys. Lett. A, 369, 62 (2007) · Zbl 1209.81097
[18] Ebaid, A., Phys. Lett. A, 365, 213 (2007) · Zbl 1203.35213
[19] Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A., Phys. Lett. A, 371, 234 (2007) · Zbl 1209.81104
[20] Bekir, A.; Boz, A., Int. J. Nonlinear Sci. Numer. Simul., 8, 513 (2007)
[21] Yusufoğlu, E., Phys. Lett. A, 372, 442 (2008) · Zbl 1217.35156
[22] Xu, F., Phys. Lett. A, 372, 252 (2008) · Zbl 1217.35110
[23] Zhu, S.-D., Int. J. Nonlinear Sci. Numer. Simul., 8, 461 (2007)
[24] Zhu, S.-D., Int. J. Nonlinear Sci. Numer. Simul., 8, 465 (2007)
[25] Zhu, S.-D., Phys. Lett. A, 372, 654 (2008) · Zbl 1217.37064
[26] He, J. H.; Zhang, L. N., Phys. Lett. A, 372, 1044 (2008)
[27] Fisher, R. A., Ann. Eugun., 7, 355 (1936)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.