zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential synchronization of complex networks with Markovian jump and mixed delays. (English) Zbl 1220.90040
Summary: In this letter, we investigate the exponential synchronization problem for an array of $N$ linearly coupled complex networks with Markovian jump and mixed time-delays. The complex network consists of $m$ modes and the network switches from one mode to another according to a Markovian chain with known transition probability. The mixed time-delays are composed of discrete and distributed delays, both of which are mode-dependent. The nonlinearities imbedded with the complex networks are assumed to satisfy the sector condition that is more general than the commonly used Lipschitz condition. By making use of the Kronecker product and the stochastic analysis tool, we propose a novel Lyapunov-Krasovskiĭ functional suitable for handling distributed delays and then show that the addressed synchronization problem is solvable if a set of linear matrix inequalities (LMIs) are feasible. Therefore, a unified LMI approach is developed to establish sufficient conditions for the coupled complex network to be globally exponentially synchronized in the mean square. Note that the LMIs can be easily solved by using the Matlab LMI toolbox and no tuning of parameters is required. A simulation example is provided to demonstrate the usefulness of the main results obtained.

90B15Network models, stochastic (optimization)
34F05ODE with randomness
34K20Stability theory of functional-differential equations
60J10Markov chains (discrete-time Markov processes on discrete state spaces)
93E15Stochastic stability
Full Text: DOI
[1] Watts, D. J.; Strogatz, S. H.: Nature. 393, 440 (1998)
[2] Wang, X. -F.; Chen, G.: Int. J. Bifur. chaos. 12, No. 1, 187 (2002)
[3] Jost, J.; Joy, M.: Phys. rev. E. 65, 061201 (2002)
[4] J. Liang, Z. Wang, X. Liu, Exponential synchronization of stochastic delayed discrete-time complex networks, Nonlinear Dynam., in press
[5] Arenas, A.; Díaz-Guilera, A.; Pérez-Vicente, C. J.: Physica D: Nonlinear phenomena. 224, No. 1 -- 2, 27 (2006)
[6] Zheleznyak, A.; Chua, L. O.: Int. J. Bifur. chaos. 4, No. 3, 639 (1994) · Zbl 0900.92015
[7] Perez-Munuzuri, V.; Perez-Villar, V.; Chua, L. O.: IEEE trans. Circuits syst.-I. 40, 174 (1993) · Zbl 0875.94136
[8] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 64, No. 8, 821 (1990)
[9] Li, Z.; Chen, G.: IEEE trans. Circuits syst.-II. 53, No. 1, 28 (2006)
[10] Wu, C. W.: IEEE trans. Circuits syst.-II. 52, No. 5, 282 (2005)
[11] Gao, H.; Chen, T.: IEEE trans. Automat. control. 52, 328 (2007)
[12] Gao, H.; Lam, J.; Chen, G.: Phys. lett. A. 360, 263 (2006)
[13] Mahmoud, M. S.; Shi, Y.; Nounou, H. N.: Int. J. Innovative comput. Inform. control. 3, No. 2, 407 (2007)
[14] Basin, M.; Sanchez, E.; Martinez-Zuniga, R.: Int. J. Innovative comput. Inform. control. 3, No. 5, 1309 (2007)
[15] Li, C. G.; Chen, G.: Physica A. 343, 263 (2004)
[16] Wang, Z.; Liu, Y.; Fraser, K.; Liu, X.: Phys. lett. A. 354, No. 4, 288 (2006)
[17] Wang, Z.; Liu, Y.; Li, M.; Liu, X.: IEEE trans. Neural networks. 17, No. 3, 814 (2006)
[18] Lu, W. L.; Chen, T. P.: IEEE trans. Circuits syst.-I. 51, No. 12, 2491 (2004)
[19] Lu, W. L.; Chen, T. P.; Chen, G.: Physica D: Nonlinear phenomena. 221, No. 2, 118 (2006)
[20] Casey, M. P.: Neural comput.. 8, No. 6, 1135 (1996)
[21] Tino, P.; Cernansky, M.; Benuskova, L.: IEEE trans. Neural networks. 15, No. 1, 6 (2004)
[22] Wang, Z.; Liu, Y.; Yu, L.; Liu, X.: Phys. lett. A. 356, No. 4 -- 5, 346 (2006)
[23] Busch, C.; Magdon-Ismail, M.; Mavronicolas, M.: J. parallel distrib. Comput.. 67, 1168 (2007)
[24] Chen, W. -M.; Li, C. -S.; Chiang, F. -Y.; Chao, H. -C.: Comput. commun.. 30, 2892 (2007)
[25] Gunawan, I.: Reliability eng. Syst. safety. 93, 271 (2008)
[26] Torres, J. J.; Marro, J.; Garrido, P. L.; Cortes, J. M.; Ramos, F.; Munoz, M. A.: Biophys. chem.. 115, 285 (2005)
[27] Ji, Y.; Chizeck, H. J.: IEEE trans. Automat. control. 35, 777 (1990) · Zbl 0714.93060
[28] Shi, P.; Xia, Y.; Liu, G.; Rees, D.: IEEE trans. Automat. control. 51, No. 1, 97 (2006)
[29] Hu, L.; Shi, P.; Huang, B.: J. math. Anal. appl.. 313, No. 2, 504 (2006)
[30] Liu, Y.; Wang, Z.; Liu, X.: Neural networks. 19, No. 5, 667 (2006) · Zbl 1102.68569
[31] K.Q. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of 39th IEEE Conference on Decision and Control, December 2000, Sydney, Australia, 2000, pp. 2805 -- 2810
[32] Khasminskii, R. Z.: Stochastic stability of differential equations. (1980) · Zbl 1259.60058
[33] Skorohod, A. V.: Asymptotic methods in the theory of stochastic differential equations. (1989)
[34] Lu, J. Q.; Ho, D. W. C.: Chaos solitons fractals. 37, 1497 (2008)
[35] Lu, J. Q.; Ho, D. W. C.; Liu, M.: Phys. lett. A. 369, No. 5 -- 6, 444 (2007)
[36] Chua, L. O.; Wu, C. W.; Huang, A.; Zhong, G. -Q.: IEEE trans. Circuits syst.-I. 40, 732 (1993)
[37] Wang, X. F.; Zhong, G. Q.; Tang, K. F.; Liu, Z. F.: IEEE trans. Circuits syst.-I. 48, No. 9, 1151 (2001)
[38] Cruz-Hernández, C.; Romero-Haros, N.: Commun. nonlinear sci. Numer. simul.. 13, 645 (2008)