×

zbMATH — the first resource for mathematics

God, king, and geometry: revisiting the introduction to Cauchy’s Cours d’analyse. (English) Zbl 1221.01065
Cauchy’s textbook of 1821 included a seven-page introduction. The present paper interprets that extract in terms of religion and (governmental, institutional, and intellectual) politics.

MSC:
01A55 History of mathematics in the 19th century
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alder, K., A revolution to measure: the political economy of the metric system in France, (), 39-71
[2] Alder, K., French engineers become professionals; or, how meritocracy made knowledge objective, (), 94-125
[3] Alexander, A., Tragic mathematics: romantic narratives and the refounding of mathematics in the early nineteenth century, Isis, 97, 714-726, (2006) · Zbl 1131.01303
[4] Arnold, D.H., 1981. Poisson and mechanics. In: Métivier, M., Costabel, P., Dugac, P. (Eds.), Siméon-Denis Poisson et la science de son temps. École Polytechnique, Palaiseau.
[5] Belhoste, B., Le cours d’analyse de Cauchy à l’ecole polytechnique en seconde année, Sciences et techniques en perspective, 9, 101-178, (1984-1985)
[6] Belhoste, B., 1985. Cauchy, 1789-1857: un mathématicien légitimiste au XIXe siècle. Belin, Paris. · Zbl 0593.01006
[7] Belhoste, B., 1991. Augustin-Louis Cauchy: A Biography. Springer, New York (translated by F. Ragland). · Zbl 0726.01015
[8] Belhoste, B., Un modèle à l’épreuve. L’école polytechnique de 1794 au second empire, (), 9-30
[9] Belhoste, B., The école polytechnique and mathematics in nineteenth-century France, (), 15-30
[10] Belhoste, B., 2003. La formation d’une technocratie: L’École polytechnique et ses élèves de la Révolution au Second Empire. Belin, Paris.
[11] Benis-Sinaceur, H., Cauchy et Bolzano, Revue d’histoire des sciences, 26, 2, 97-112, (1973) · Zbl 0266.01017
[12] Bernard, P., 1911. Confession (du Concile de Latran au Concile de Trente). In: Vacant, A., Mangenot, E. (Eds.), Dictionnaire de Théologie Catholique, vol. 3. Letouzey, Paris, cols. 894-926.
[13] Bottazzini, U., 1992. Geometrical rigour and ‘modern analysis’, an introduction to Cauchy’s Cours d’analyse. In: Cauchy, A.L. (Ed.), Cours d’analyse de l’École royale polytechnique, 1ère partie, Analyse algébrique. CLUEB, Bologna, pp. xi – clxvii.
[14] Bottazzini, U., From Paris to Berlin: contrasted images of nineteenth-century mathematics, (), 31-47
[15] Boyer, C.B., A history of mathematics, (1968), John Wiley & Sons New York · Zbl 0182.30401
[16] Bradley, R.E.; Sandifer, C.E., Cauchy’s cours d’analyse: an annotated translation, (2009), Springer New York · Zbl 1189.26001
[17] Cauchy, A.-L., 1821. Cours d’Analyse de l’École Royale Polytechnique; \(1^{\mathit{re}}\) Partie. Analyse Algébrique. Debure, Paris. Reprint Éditions Jacques Gabay, Sceaux, 1989.
[18] Cauchy, A.-L., 1823. Résumé des Leçons données a l’École Royale Polytechnique, sur le Calcul Infinitésimal. Debure, Paris.
[19] Chatzis, K., Mécanique rationnelle et mécanique des machines, (), 95-108
[20] Costabel, P., Siméon-denis Poisson: aspect de l’homme et de son oeuvre, (), 1-21 · Zbl 1295.01006
[21] Dahan Dalmedico, A., 1992. Mathématisations: Augustin-Louis Cauchy et l’École Française. A. Blanchard, Paris.
[22] Dedekind, R., 1948. Essays on the Theory of Numbers. Open Court, La Salle (translated from the German text of 1901 by W.W. Beman).
[23] Derrida, J., 1974. Of Grammatology. Johns Hopkins University Press, Baltimore (translated by G.C. Spivak).
[24] Fox, R., The rise and fall of Laplacian physics, Historical studies in the physical sciences, 4, 89-136, (1974)
[25] Fraser, C.G., 1997. Calculus and Analytical Mechanics in the Age of Enlightenment. Variorum, Aldershot. · Zbl 0953.01009
[26] Freudenthal, H., Did Cauchy plagiarize Bolzano?, Archive for history of exact sciences, 7, 5, 375-392, (1971) · Zbl 0246.01010
[27] Gilain, C., Cauchy et le cours d’analyse de l’ecole polytechnique, Bulletin de la société des amis de la bibliothèque de l’école polytechnique, 5, 3-145, (1989)
[28] Gillispie, C.C., Un enseignement hégémonique: LES mathématiques, (), 31-44
[29] Gillispie, C.C., Pierre-Simon Laplace 1749-1827. A life in exact science, (1997), Princeton University Press Princeton · Zbl 0917.01043
[30] Gillispie, C.C., Science and polity in France: the revolutionary and napoleonic years, (2004), Princeton University Press Princeton
[31] Grabiner, J.V., The origins of cauchy’s rigorous calculus, (1981), The MIT Press Cambridge, MA · Zbl 0517.01002
[32] Grabiner, J.V., Was newton’s calculus a dead end? the continental influence of maclaurin’s treatise of fluxions, The American mathematical monthly, 104, 5, 393-410, (1997) · Zbl 0885.01010
[33] Grabiner, J.V., Newton, Maclaurin, and the authority of mathematics, The American mathematical monthly, 111, 10, 841-852, (2004) · Zbl 1187.01018
[34] Grattan-Guinness, I., Bolzano, Cauchy and the ‘new analysis’ of the early nineteenth century, Archive for history of exact sciences, 6, 5, 372-400, (1970) · Zbl 0198.00601
[35] Grattan-Guinness, I., 1980. The emergence of mathematical analysis and its foundational progress, 1780-1880. In: Grattan-Guinness, I. (Ed.), From the Calculus to Set Theory, 1630-1910. Duckworth, London.
[36] Grattan-Guinness, I., 1990. Convolutions in French Mathematics, 1800-1840: From the Calculus and Mechanics to Mathematical Analysis and Mathematical Physics. Birkhäuser, Basel.
[37] Grosholz, E.R., Descartes’ unification of algebra and geometry, (), 156-168
[38] Hogben, L., 1960. Mathematics in the Making. Macdonald, London.
[39] Høyrup, J., The formation of a myth: Greek mathematics—our mathematics, (), 103-122 · Zbl 0873.01003
[40] Hunt, B.J., Rigorous discipline: oliver heaviside versus the mathematicians, (), 72-95
[41] Iacobacci, R.F., 1965. Augustin-Louis Cauchy and the Development of Mathematical Analysis. New York University School of Education doctoral dissertation.
[42] Katz, V.J., A history of mathematics: an introduction, (2009), Addison-Wesley Boston
[43] Lakatos, I., ()
[44] Laugwitz, D., Infinitely small quantities in cauchy’s textbooks, Historia Mathematica, 14, 258-274, (1987) · Zbl 0638.01012
[45] Mahoney, M.S., The beginnings of algebraic thought in the seventeenth century, (), 141-155 · Zbl 0446.01009
[46] Mazzotti, M., The geometers of god: mathematics and reaction in the kingdom of Naples, Isis, 89, 674-701, (1998) · Zbl 1135.01307
[47] Montucla, J.F., 1802. Histoire des mathématiques, nouvelle édition, considérablemennt augmentée, et prolongée jusque vers l’époque actuelle. Volume III. Henri Agasse, Paris.
[48] Ortolan, T., 1911. Confession. Questions Morales et Pratiques. In: Vacant, A., Mangenot, E. (Eds.), Dictionnaire de Théologie Catholique, vol. 3. Letouzey, Paris, cols. 942-960.
[49] Porter, T.M., Trust in numbers: the pursuit of objectivity in science and public life, (1995), Princeton University Press Princeton
[50] Richards, J.L., Rigor and clarity: foundations of mathematics in France and england, 1800-1840, Science in context, 4, 2, 297-319, (1991) · Zbl 1181.01035
[51] Richards, J.L., God, truth, and mathematics in nineteenth-century england, (), 17-38
[52] Richards, J.L., Historical mathematics in the French eighteenth century, Isis, 97, 4, 700-713, (2006) · Zbl 1131.01009
[53] Rusnock, A., Quantification, precision, and accuracy: determinations of population in the ancien Régime, (), 17-38
[54] Shapin, S.; Schaffer, S., Leviathan and the air-pump: hobbes, boyle, and the experimental life, (1985), Princeton University Press Princeton
[55] Terrall, M., Metaphysics, mathematics, and the gendering of science in eighteenth-century France, (), 246-271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.