×

zbMATH — the first resource for mathematics

Building some kernel of functoriality? The case of unramified automorphic induction from GL\(_1\) to GL\(_2\). (Construire un noyau de la fonctorialité? Le cas de l’induction automorphe sans ramification de GL\(_1\) à GL\(_2\).) (French. English summary) Zbl 1221.11221
Let \(H\) denote the group \(\text{GL}_2\) over a global field \(F\), let \(E\) be a quadratic extension of \(F\) and let \(G = \text{Res}_{E/F}\text{GL}_1\). In the present article the author realizes the well-known transfer of automorphic forms on \(G(F_{\mathbb A}) = E_{\mathbb A}^{\times}\) to automorphic forms on \(H(F_{\mathbb A})\) by a new method. More precisely, it is the unramified case to which the method is applied: the automorphic forms are eigenfunctions of the spherical Hecke algebra at all places, \(E/F\) is an everywhere unramified extension of function fields. The transfer is achieved by the construction of kernels, which are spherical functions on the product of \(E^{\times}\backslash E_{\mathbb A}^{\times}\) and \(\text{GL}_2(F)\backslash \text{GL}_2(F_{\mathbb A})\). Local kernels are defined for all places using Whittaker functions. For the construction of a global kernel a sum over \(E^{\times}\times F^{\times}\) of the product of local kernels over all places is considered. In order to make it invariant under \(\text{GL}_2(F)\) complementary terms must be added. Here the Poisson formula on \(E_{\mathbb A}\) is used. The proofs are elementary computations at all places.

MSC:
11R39 Langlands-Weil conjectures, nonabelian class field theory
11F03 Modular and automorphic functions
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Borel, A.; Casselman, W., Automorphic forms, representations and L-functions, 33.I et 33.II, (1978), Proceedings of Symposia in Pure Mathematics, AMS
[2] Cogdell, J. W.; Piatetski-Shapiro, I. I., Converse theorems for \(GL_n,\) Publications mathématiques de l’IHES, 79, 157-214, (1994) · Zbl 0814.11033
[3] Jacquet, H.; Langlands, R. P., Automorphic forms on GL(2), (1970), Springer-Verlag, Berlin · Zbl 0236.12010
[4] Lafforgue, L., Quelques remarques sur le principe de fonctorialité, (2007)
[5] Lafforgue, L., Construire des noyaux de la fonctorialité ? Définition générale, cas de l’identité de \(GL_2\) et construction générale conjecturale de leurs coefficients de Fourier, (2009)
[6] Langlands, R. P., Contributions to automorphic forms, geometry, and number theory, Beyond endoscopy, 611-697, (2004), Johns Hopkins Univ. Press, Baltimore, MD · Zbl 1078.11033
[7] Shalika, J. A., The multiplicity one theorem for \(GL_n,\) Ann. of Math. (2), 100, 171-193, (1974) · Zbl 0316.12010
[8] Shintani, T., On an explicit formula for class-\(1 \)“whittaker functions” on \(GL_n\) over \(P\)-adic fields, Proceedings of the Japan Academy, 52, 4, 180-182, (1976) · Zbl 0387.43002
[9] Tate, J. T, Fourier analysis in number fields, and Hecke’s zeta-functions, (1950)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.