×

zbMATH — the first resource for mathematics

Galois actions on torsion points of one-dimensional formal modules. (English) Zbl 1221.11227
Let \(F\) be a local non-Archimedean field with ring of integers \(\mathfrak o\) and uniformizer \(\varpi\), \(k\) an algebraically closed extension of the residue field of \(\mathfrak o\), \(\mathbb X\) a one-dimensional formal \(\mathfrak o\)-module of \(F\)-height \(n\) over \(k\). By the work of Drinfeld, the universal deformation \(X\) of \(\mathbb X\) is a formal group over a power series ring \(R_{0}\) in \(n-1\) variables over \(W_{\mathfrak o}(k)\). For \(h\in\{0,\dots, n-1\}\) let \(U_h \subset \text{Spec}(R_{0})\) be the locus where the connected part of the associated \(\varpi\)-divisible module \(X[\varpi^{\infty }]\) has height \(h\). The author shows that the representation of \(\pi _{1}(U_h)\) on the Tate module of the étale quotient is surjective.

MSC:
11S31 Class field theory; \(p\)-adic formal groups
11S20 Galois theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Boyer, P., Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura et applications, preprint · Zbl 1172.14016
[2] Boyer, P., On the irreductibility of some igusa varieties, preprint
[3] Bourbaki, N., Commutative algebra, Elem. math. (Berlin), (1989), Springer-Verlag Berlin, Chapters 1-7
[4] Drinfeld, V.G., Elliptic modules, Mat. USSR-sb., 23, 4, 561-592, (1974), English translation · Zbl 0321.14014
[5] Hazewinkel, M., Formal groups and applications, Pure appl. math., vol. 78, (1978), Academic Press New York, London · Zbl 0454.14020
[6] Hopkins, M.J.; Gross, B.H., Equivariant vector bundles on the lubin – tate moduli space, (), 23-88 · Zbl 0807.14037
[7] Harris, M.; Taylor, R., The geometry and cohomology of some simple Shimura varieties, Ann. of math. stud., vol. 151, (2001), Princeton University Press Princeton, NJ, with an appendix by Vladimir G. Berkovich · Zbl 1036.11027
[8] E. Lau, Tate modules of universal p-divisible groups, preprint, January 2008
[9] Lubin, J.; Tate, J., Formal moduli for one-parameter formal Lie groups, Bull. soc. math. France, 94, 49-59, (1966) · Zbl 0156.04105
[10] Rosen, M.; Zimmermann, K., Torsion points of generic formal groups, Trans. amer. math. soc., 311, 1, 241-253, (1989) · Zbl 0669.14011
[11] Strauch, M., Deformation spaces of one-dimensional formal modules and their cohomology, Adv. math., 217, 3, 889-951, (2008) · Zbl 1140.22017
[12] Tian, Y., p-adic monodromy of the universal deformation of an elementary barsotti – tate group, preprint · Zbl 1183.14062
[13] Y. Tian, p-Adic monodromy of the universal deformation of a HW-cyclic Barsotti-Tate group, preprint · Zbl 1183.14062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.