×

A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. (English) Zbl 1221.34008

Summary: We investigate the fractional Caputo derivative of a composition function. The obtained results are applied to investigate the fractional Euler–Lagrange and Hamilton equations for constrained systems. The approach is applied within an illustrative.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
45J05 Integro-ordinary differential equations
70H03 Lagrange’s equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives – theory and applications (1993), Gordon and Breach: Gordon and Breach Linghorne, PA · Zbl 0818.26003
[2] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations (2006), Elsevier · Zbl 1092.45003
[4] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions (1979), Nauka: Nauka Moscow · Zbl 0515.33001
[5] Hardy, G. H., Riemann’s form of Taylor’s series, J London Math Soc, 20, 48-57 (1954) · Zbl 0063.01925
[6] Trujillo, J. J., On a Riemann-Liouville generalized Taylor’s formula, J Math Anal Appl, 231, 255-265 (1999) · Zbl 0931.26004
[7] Magin, R. L., Fractional calculus in bioengineering (2006), Begell House Publisher, Inc.: Begell House Publisher, Inc. CT
[8] Tenreiro Machado, J. A., A probabilistic interpretation of the fractional-order differentiation, Frac Calc Appl Anal, 8, 73-80 (2003) · Zbl 1035.26010
[9] Lorenzo, C. F.; Hartley, T. T., Fractional trigonometry and the spiral functions, Nonlinear Dynam, 38, 23-60 (2004) · Zbl 1094.26004
[10] Silva, M. F.; Tenreiro Machado, J. A.; Lopes, A. M., Modelling and simulation of artificial locomotion systems, Robotica, 23, 595-606 (2005)
[11] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional orders, fractals and fractional calculus in continoum mechanics (1997), Springer Verlag: Springer Verlag Wien and New York · Zbl 1438.26010
[12] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7, 9, 1461-1477 (1996) · Zbl 1080.26505
[13] Mainardi, F.; Pagnini, G.; Gorenflo, R., Mellin transform and subordination laws in fractional diffusion processes, Frac Calc Appl Anal, 6, 4, 441-459 (2003) · Zbl 1083.60032
[14] Raspini, A., Simple solutions of the fractional Dirac equation of order \(\frac{2}{3} \), Phys Scripta, 64, 20-22 (2001) · Zbl 1061.81518
[15] Naber, M., Time fractional Schrödinger equation, J Math Phys, 45, 8, 3339-3352 (2004) · Zbl 1071.81035
[16] Rabei, E.; Alhalholy, T.; Rousan, A., Potential of arbitrary forces with fractional derivatives, Int J Theor Phys A, 19, 17-18, 3083-3096 (2004) · Zbl 1080.70516
[17] Agrawal, O. P., Formulation of Euler-Lagrange equations for fractional variational problems, J Math Anal Appl, 272, 368-379 (2002) · Zbl 1070.49013
[18] Agrawal, O. P.; Baleanu, D., A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems, J Vibr Contr, 13, 9-10, 1269-1281 (2007) · Zbl 1182.70047
[19] Tenreiro Machado, J. A., Discrete-time fractional-order controllers, Frac Calc Appl Anal, 4, 47-66 (2001) · Zbl 1111.93307
[20] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys Rev E, 53, 1890-1899 (1996)
[21] Riewe, F., Mechanics with fractional derivatives, Phys Rev E, 55, 3581-3592 (1997)
[22] Klimek, M., Lagrangian and Hamiltonian fractional sequential mechanics, Czech J Phys, 52, 1247-1253 (2002) · Zbl 1064.70013
[23] Baleanu, D.; Muslih, S., Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Phys Scripta, 72, 2-3, 119-121 (2005) · Zbl 1122.70360
[24] Muslih, S.; Baleanu, D., Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives, J Math Anal Appl, 304, 3, 599-606 (2005) · Zbl 1149.70320
[25] Rabei, E. M.; Nawafleh, K. I.; Hijjawi, R. S.; Muslih, S. I.; Baleanu, D., The Hamilton formalism with fractional variational derivatives, J Math Anal Appl, 327, 2, 891-897 (2007) · Zbl 1104.70012
[26] Baleanu, D.; Muslih, S. I., Formulation of Hamiltonian equations for fractional variational problems, Czech J Phys, 55, 6, 633-642 (2005) · Zbl 1181.70017
[27] Muslih, S.; Baleanu, D.; Rabei, E., Hamiltonian formulation of classical fields within Riemann-Liouville, Phys Scripta, 73, 6, 436-438 (2006) · Zbl 1165.70310
[28] Baleanu, D.; Avkar, T., Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, Nuovo Ciment B, 119, 73-79 (2004)
[29] Baleanu, D.; Muslih, S. I., About fractional supersymmetric quantum mechanics, Czech J Phys, 55, 9, 1063-1066 (2005) · Zbl 1465.81042
[30] Henneaux, M.; Teitelboim, C., Quantization of gauge systems (1993), Princeton University · Zbl 0638.58041
[31] Llosa, J.; Vives, J., Hamiltonian formalism for nonlocal Lagrangians, J Math Phys, 35, 2856-2877 (1994) · Zbl 0807.70014
[32] Nesterenko, V. V., Singular Lagrangians with higher derivatives, J Phys A: Math Gen, 22, 1673-1687 (1989) · Zbl 0695.58014
[34] Baleanu, D.; Trujillo, J. J., On exact solutions of a class of fractional Euler-Lagrange equations, Nonlinear Dynam, 52, 4, 331-335 (2008) · Zbl 1170.70328
[35] Gomis, J.; Kamimura, K.; Llosa, J., Hamiltonian formalism for space-time noncummutative theories, Phys Rev D, 63, 945003-1-945003-6 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.