Topology identification and adaptive synchronization of uncertain complex networks with adaptive double scaling functions. (English) Zbl 1221.34046

Summary: This paper discusses topology identification and adaptive synchronization of uncertain complex networks with scaling functions. In comparison with existing scaling function synchronization, the scaling function can be identified by adaptive laws in this paper. Moreover, the topological structure of uncertain networks are identified simultaneously in the process of synchronization. Illustrative examples are presented to demonstrate the application of the theoretical results.


34A55 Inverse problems involving ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI


[1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavezf, M.; Hwanga, U., Complex networks: structure and dynamics, Phys Rep, 424, 175-308 (2006) · Zbl 1371.82002
[2] Li, X.; Chen, G., Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint, IEEE Trans Circ Syst I, 50, 1381-1390 (2003) · Zbl 1368.37087
[3] Lü, J.; Yu, X.; Chen, G., Chaos synchronization of general complex dynamical networks, Physica A, 334, 281-302 (2004)
[4] Zhou, J.; Chen, T.; Xiang, L., Adaptive synchronization of coupled chaotic systems based on parameters identification and its applications, Int J Bifurcation Chaos, 16, 10, 2923-2933 (2006) · Zbl 1142.34387
[5] Zhou, J.; Xiang, L.; Liu, Z., Global synchronization in general complex delayed dynamical networks and its applications, Physica A, 385, 729-742 (2007)
[6] Ma, Z.; Liu, Z.; Zhang, G., A new method to realize cluster synchronization in connected chaotic networks, Chaos, 16, 2, 023103 (2006) · Zbl 1146.37330
[7] Kocarev, L.; Amato, P., Synchronization in power-law networks, Chaos, 15, 024101 (2005) · Zbl 1080.37106
[8] Wang, X.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans Circ Syst I, 49, 54-62 (2002) · Zbl 1368.93576
[9] Watts, D.; Strogatz, S., Collective dynamics of ‘small-world’ networks, Nature, 391, 4, 440-442 (1998) · Zbl 1368.05139
[10] Barabasi, A.; Albert, R., Emergence of scaling in random networks, Science, 286, 15, 509-512 (1999) · Zbl 1226.05223
[11] Strogatz, S., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[12] Tang, Y.; Fang, J., Synchronization of N-coupled fractional-order chaotic systems with ring connection, Commun Nonlinear Sci Numer Simulat, 15, 2, 401-412 (2010) · Zbl 1221.34103
[13] Wu, X., Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay, Physica A, 387, 997-1008 (2008)
[14] Tang, Y.; Qiu, R.; Fang, J.; Miao, Q.; Xia, M., Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Phys Lett A, 372, 4425-4433 (2008) · Zbl 1221.82078
[15] Zhou, J.; Lu, J., Topology identification of weighted complex dynamical networks, Physica A, 386, 1, 481-491 (2007)
[16] Lu, J.; Cao, J., Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos, 15, 043901 (2005) · Zbl 1144.37378
[17] Lin, W.; Ma, H., Failure of parameter identification based on adaptive synchronization techniques, Phys Rev E, 75, 066212 (2007)
[18] Yu, W.; Cao, J., Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks, Chaos, 16, 023119 (2006) · Zbl 1146.93371
[19] Yu, W.; Cao, J., Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification, Physica A, 375, 2, 467-482 (2007)
[20] Yu, W.; Chen, G.; Cao, J.; Lü, J.; Parlitz, U., Parameter identification of dynamical systems from time series, Phys Rev E, 75, 6, 067201 (2007)
[21] Zhang, Q.; Lu, J.; Lü, J.; Tse, C., Adaptive feedback synchronization of a general complex dynamical network with delayed nodes, IEEE Trans Circ Syst II, 55, 2, 183-187 (2008)
[22] Zhou, J.; Lu, J.; Lü, J., Adaptive synchronization of an uncertain complex dynamical network, IEEE Trans Autom Control, 51, 4, 652-656 (2006) · Zbl 1366.93544
[23] Zhou, J.; Lu, J.; Lü, J., Pinning adaptive synchronization of a general complex dynamical network, Automatica, 44, 4, 996-1003 (2008) · Zbl 1283.93032
[24] Liu, H.; Lu, J.; Lü, J.; David, J., Structure identification of uncertain general complex dynamical networks with time delay, Automatica, 45, 4, 1799-1807 (2009) · Zbl 1185.93031
[25] Guo, W.; Austin, F.; Chen, S. H., Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling, Commun Nonlinear Sci Numer Simulat, 15, 1631-1639 (2010) · Zbl 1221.34213
[26] Tang, H.; Chen, L.; Lu, J.; Tse, C., Adaptive synchronization between two complex networks with nonidentical topological structures, Physica A, 387, 2, 5623-5630 (2008)
[27] Zhang, R.; Yang, Y.; Xu, Z.; Hu, M., Function projective synchronization in drive-response dynamical network, Phys Lett A, 374, 3025-3028 (2010) · Zbl 1237.34034
[28] Tang, Y.; Fang, J., General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters, Phys Lett A, 372, 1816-1826 (2008) · Zbl 1220.37027
[29] Lorenz, E., Deterministic non-periodic flow, J Atmos Sci, 20, 130-141 (1963) · Zbl 1417.37129
[30] Lü, J.; Chen, G., A new chaotic attractor coined, Int J Bifurcation Chaos, 12, 3, 659-661 (2002) · Zbl 1063.34510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.