zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The function cascade synchronization scheme for discrete-time hyperchaotic systems. (English) Zbl 1221.34119
Summary: The function cascade synchronization scheme is proposed to investigate discrete-time hyperchaotic systems. By choosing some different error functions and with the aid of symbolic-numeric computation, the proposed scheme is applied to achieve the function cascade synchronization for two discrete-time hyperchaotic systems: the generalized Hénon map and the discrete-time Rössler system, respectively. Numerical simulations are used to verify the effectiveness and feasibility of the proposed technique.
MSC:
34C28Complex behavior, chaotic systems (ODE)
37D45Strange attractors, chaotic dynamics
39A30Stability theory (difference equations)
34H10Chaos control (ODE)
93D15Stabilization of systems by feedback
WorldCat.org
Full Text: DOI
References:
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[2] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys rev lett 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[3] Chen, G. R.; Dong, X.: From chaos to order, (1998) · Zbl 0908.93005
[4] Liao, T. L.; Tsai, S. H.: Adaptive synchronization of chaotic systems and its application to secure communications, Chaos solitons fract 11, 1387-1396 (2000) · Zbl 0967.93059 · doi:10.1016/S0960-0779(99)00051-X
[5] Chen, G. R.: Chaos on some controllability conditions for chaotic dynamics control, Chaos solitons fract 8, 1461-1470 (1997)
[6] Lu, J. A.; Wu, X. Q.; Han, X.; Lü, J. H.: Synchronization of a unified chaotic system and the application in secure communication, Phys lett A 305, 365-370 (2002) · Zbl 1005.37012 · doi:10.1016/S0375-9601(02)01497-4
[7] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V.: Adaptive nonlinear control without overparametrization, Syst control lett 19, 177-185 (1992) · Zbl 0763.93043 · doi:10.1016/0167-6911(92)90111-5
[8] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V.: Nonlinear and adaptive control design, (1995)
[9] Massen, M. T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design, Phys lett A 360, 582-587 (2007)
[10] Zeng, X. P.; Ruan, J.; Li, L. J.: Synchronization of chaotic systems by feedback, Commun nonlinear sci numer simul 4, No. 2, 162-165 (1999) · Zbl 1044.37558 · doi:10.1016/S1007-5704(99)90032-1 · http://ns.nlspku.ac.cn/journal/abs14/17.html
[11] Hwang, C. C.; Hsieh, J. Y.; Lin, R. S.: A linear continuous feedback control of Chua circuit, Chaos solitons fract 8, 1507-1515 (1997)
[12] Lü, J. H.; Lu, J. A.: Controlling uncertain Lü system using linear feedback, Chaos solitons fract 17, 127-133 (2003) · Zbl 1039.37019 · doi:10.1016/S0960-0779(02)00456-3
[13] Chen, M. Y.; Han, Z. Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos solitons fract 17, 709-716 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[14] Lu, J. A.; Wu, X. Q.; Han, X.; Lü, J. H.: Adaptive feedback synchronization of a unified chaotic system, Phys lett A 329, 327-333 (2004) · Zbl 1209.93119 · doi:10.1016/j.physleta.2004.07.024
[15] Bowong, S.: Adaptive synchronization between two different chaotic dynamical systems, Commun nonlinear sci numer simul 12, No. 6, 976-985 (2007) · Zbl 1115.37030 · doi:10.1016/j.cnsns.2005.10.003
[16] Kakmeni, F. M.; Bowong, S.; Tchawoua, C.: Nonlinear adaptive synchronization of a class of chaotic systems, Phys lett A 355, 47-55 (2006) · Zbl 1130.93404
[17] Bai, E.; Lonngren, K. E.: Synchronization and control of chaotic systems, Chaos solitons fract 10, 1571-1575 (1998) · Zbl 0958.93513 · doi:10.1016/S0960-0779(98)00204-5
[18] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control, Phys lett A 278, 191-197 (2001) · Zbl 0972.37019 · doi:10.1016/S0375-9601(00)00777-5
[19] Carroll, T. L.; Pecora, L. M.: Cascading synchronized chaotic, Physica D 67, 126-140 (1993) · Zbl 0800.94100 · doi:10.1016/0167-2789(93)90201-B
[20] Yan, J. P.; Li, C. P.: Generalized projective synchronization of chaos: the cascade synchronization approach, Chaos solitons fract 30, 140-146 (2006) · Zbl 1144.37370 · doi:10.1016/j.chaos.2005.08.155
[21] Chen, Y.; An, H. L.; Li, Z. B.: The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems, Appl math comput 197, 96-110 (2008) · Zbl 1136.93410 · doi:10.1016/j.amc.2007.07.036
[22] An, H. L.; Chen, Y.: The function cascade synchronization method and applications, Commun nonlinear sci numer simul (2007)
[23] Hitzl, D. L.; Zele, F.: An exploration of the hénon quadratic map, Physica D 14, 305-326 (1985) · Zbl 0602.58025 · doi:10.1016/0167-2789(85)90092-2
[24] Rulkov, N. F.: Regularization of synchronized chaotic bursts, Phys rev lett 86, 183-186 (2001)
[25] Itoh, M.; Yang, T.; Chua, L. O.: Int J bifur chaos appl sci eng, Int J bifur chaos appl sci eng 11, 551 (2001)
[26] Makoto, I.; Tao, Y.; Leon, O. C.: Conditions for impulsive synchronization of chaotic and hyperchaotic systems, Int J bifurcat chaos 2, 551-560 (2001) · Zbl 1090.37520 · doi:10.1142/S0218127401002262
[27] Li, X.; Chen, Y.; Li, Z. B.: Function projective synchronization in discrete-time chaotic systems, Z naturforsch 63a, 7-14 (2008)
[28] Feng, G.; Chen, G. R.: Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos solitons fract 23, 459-467 (2005) · Zbl 1061.93501 · doi:10.1016/j.chaos.2004.04.013
[29] Yan, Z. Y.: A nonlinear control scheme to anticipated and complete synchronization in discrete-time chaotic (hyper-chaotic) systems, Phys lett A 343, 423-431 (2005) · Zbl 1194.37065 · doi:10.1016/j.physleta.2005.06.012
[30] Yan, Z. Y.: Q -- S synchronization in 3D hénon-like map and generalized hénon map via a scalar controller, Phys lett A 342, 309-317 (2005) · Zbl 1222.37093 · doi:10.1016/j.physleta.2005.04.049
[31] Yan, Z. Y.: Q -- S (complete or anticipated) synchronization backstepping scheme in a class of discrete-time chaotic (hyperchaotic) systems: a symbolic -- numeric computation approach, Chaos 16, 013119 (2006) · Zbl 1144.37420 · doi:10.1063/1.1930727
[32] Lu, J. F.: Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems, Commun nonlinear sci numer simul (2007)
[33] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Adaptive synchronization of a hyperchaotic system with uncertain parameter, Chaos solitons fract 30, 1133-1142 (2006) · Zbl 1142.37325 · doi:10.1016/j.chaos.2005.09.047
[34] Park, J. H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos solitons fract 26, 959-964 (2005) · Zbl 1093.93537 · doi:10.1016/j.chaos.2005.02.002