zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bounds for a new chaotic system and its application in chaos synchronization. (English) Zbl 1221.34122
Summary: We investigate the localization problem of compact invariant sets of a new chaotic system with the help of the iteration theorem and the first order extremum theorem. If there are more iterations, then the estimation for the bound of the system will be more accurate, because the shape of the chaotic attractor is irregular. We establish that all compact invariant sets of this system are located in the intersection of a ball with two frusta and we also compute its parameters. It is a great advantage that we can attain a smaller bound of the chaotic attractor compared with the classical method. One numerical example illustrating a localization of a chaotic attractor is presented as well.

34C28Complex behavior, chaotic systems (ODE)
Full Text: DOI
[1] Lorenz, E. N.: Deterministic non-periods flows [J], J atmos sci 20, No. 2, 130-141 (1963)
[2] Rösser, O. E.: An equation for continuous chaos [J], Phys lett A 57, No. 5, 397-398 (1976)
[3] Qin, Wen-Xin; Chen, Guanrong: On the boundedness of solutions of the Chen system, J math anal appl 329, No. 1, 445-451 (2007) · Zbl 1108.37030 · doi:10.1016/j.jmaa.2006.06.091
[4] Lü, Jinhu; Chen, Guanrong; Zhang, Suochun: The compound structure of a new chaotic attractor, Chaos solitons fractals 14, No. 5, 669-672 (2002) · Zbl 1067.37042 · doi:10.1016/S0960-0779(02)00007-3
[5] Chen G, Lü J. Dynamics of the lorenz system family: analysis, control and synchronization [M]. Beijing: Science Press; 2003 [in Chinese].
[6] Yu, Chang; Chen, Guanrong: Complex dynamics in Chen’s system [J], Chaos solitons fractals 27, No. 1, 75-86 (2006) · Zbl 1083.37033 · doi:10.1016/j.chaos.2004.12.011
[7] Yu, Yongguang; Zhang, Suochun: Hopf bifurcation analysis of the Lü system, Chaos solitons fractals 21, No. 5, 1215-1220 (2004) · Zbl 1061.37029 · doi:10.1016/j.chaos.2003.12.063
[8] Li, Tiecheng; Chen, Guanrong; Tang, Yun: On stability and bifurcation of Chen’s system, Chaos solitons fractals 19, No. 5, 1269-1282 (2004) · Zbl 1069.34060 · doi:10.1016/S0960-0779(03)00334-5
[9] Yu, Yongguang; Zhang, Suochun: Hopf bifurcation in the Lü system [J], Chaos solitons fractals 17, No. 5, 901-906 (2003) · Zbl 1029.34030 · doi:10.1016/S0960-0779(02)00573-8
[10] Jing, Zhujun; Yu, Chang; Chen, Guanrong: Complex dynamics in a permanent-magnet synchronous motor model, Chaos solitons fractals 22, 831-848 (2004) · Zbl 1129.70329 · doi:10.1016/j.chaos.2004.02.054
[11] Li, Z.; Park, J. B.; Joo, Y. H.; Zhang, B.; Chen, G.: Bifurcations and chaos in a permanent-magnet synchronous motor, IEEE trans circ syst 1 fundament theor appl 49, 383-387 (2002)
[12] Starkov, Konstantin E.: Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator, Commun nonlinear sci numer simul 14, No. 6, 2565-2570 (2009) · Zbl 1221.34091 · doi:10.1016/j.cnsns.2008.08.005
[13] Coria, Luis N.; Starkov, Konstantin E.: Bounding a domain containing all compact invariant sets of the permanent-magnet motor system, Commun nonlinear sci numer simul 14, No. 11, 3879-3888 (2009) · Zbl 1221.34120 · doi:10.1016/j.cnsns.2008.09.001
[14] Boichenko, V. A.; Leonov, G. A.: Dimension theory for ordinary differential equations, (2005) · Zbl 1094.34002
[15] Krishchenko, A. P.: Estimations of domain with cycles, Comput math appl 34, No. 2 -- 4, 325-332 (1997) · Zbl 0894.34024 · doi:10.1016/S0898-1221(97)00130-2
[16] Hardy, Y.; Steeb, W. H.: The Rikitake two-disk dynamo system and domains with periodic orbits, Int J theor phys 38, 2413-2417 (1999) · Zbl 0980.86005 · doi:10.1023/A:1026640221874
[17] Starkov, K. E.: Estimation of the domain containing all compact invariant sets of the optically injected laser system, Int J bifurcat chaos 17, No. 11, 4213-4217 (2007) · Zbl 1151.78014 · doi:10.1142/S0218127407019755
[18] Rui, Tang Liang; Li, Jing; Fan, Bing; Zhai, Ming-Yue: A new three-dimensional chaotic system and its circuit simulation, Phys lett A 58, No. 02 (2009) · Zbl 1199.37090
[19] LJC’PCO KOCAREV. Lie Derivatives and Dynamical Systems. Chaos Solitons Fractals 1998; 9(8): 1359 -- 1366. · Zbl 0974.37022
[20] Li, Damei; Lu, Jun-An; Wu, Xiaoqun; Chen, Guanrong: Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, J math anal appl 323, No. 2, 844-853 (2006) · Zbl 1104.37024 · doi:10.1016/j.jmaa.2005.11.008
[21] Starkov, Konstantin E.: Bounds for a domain containing all compact invariant sets of the system describing the laser -- plasma interaction, Chaos solitons fractals 39, :1671-1676 (2009) · Zbl 1197.34069 · doi:10.1016/j.chaos.2007.06.078