zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Linear observer based projective synchronization in delay Rössler system. (English) Zbl 1221.34138
Summary: A new type of linear observer based projective, projective anticipating and projective lag synchronization of time-delayed Rössler system is studied. Along with this, the approach arbitrarily scales a drive system attractor and hence a similar chaotic attractor of any desired scale can be realized with the help of a synchronizing scaling factor. A scalar synchronizing output is considered where the output equation includes both the delay and non-delay terms of the nonlinear function. The condition for synchronization is derived analytically and the values of the coupling parameters are obtained. Analytical results are verified through numerical investigation and the effect of modulated time delay in the method is discussed. An important aspect of this method is that it does not require the computation of conditional Lyapunov exponents for the verification of synchronization.

34K20Stability theory of functional-differential equations
37D45Strange attractors, chaotic dynamics
93D15Stabilization of systems by feedback
Full Text: DOI
[1] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys rev lett 78, 4193-4196 (1997) · Zbl 0896.60090
[2] Boccaletti, S.; Valladares, D. L.; Kurths, J.; Maza, D.; Mancini, H.: Synchronization of chaotic structurally nonequivalent systems, Phys rev E 61, 3712-3715 (2000)
[3] Ahlers, V.; Parlitz, U.; Lauterborn, W.: Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers, Phys rev E 58, 7208-7213 (1998)
[4] Cuomo, K. M.; Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications, Phys rev lett 71, 65-68 (1993)
[5] Schafer, C.; Rosenblum, M. G.; Kurths, J.; Abel, H. H.: Heartbeat synchronized with ventilation, Nature 392, 239-240 (1998)
[6] Blasius, B.; Huppert, A.; Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological systems, Nature 399, 354-359 (1999)
[7] Neiman, A.; Pei, X.; Russell, D.; Wojtenek, W.; Wilkens, L.; Moss, F.: Synchronization of the noisy electrosensitive cells in the paddlefish, Phys rev lett 82, 660-663 (1999)
[8] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Abarbanel, H. D. I.: Generalized synchronization of chaos in directionally coupled chaotic systems, Phys rev E 51, 980-994 (1995)
[9] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[10] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys rev lett 76, 1816-1819 (1996)
[11] Pikovsky, A. S.; Rosenblum, M. G.; Osipov, G. V.; Kurths, J.: Phase synchronization of chaotic oscillators by external driving, Physica D 104, 219-238 (1997) · Zbl 0898.70015 · doi:10.1016/S0167-2789(96)00301-6
[12] Guan, S.; Lai, C. -H.; Wei, G. W.: Phase synchronization between two essentially different chaotic systems, Phys rev E 72, No. 8, 016205 (2005)
[13] Rim, S.; Kim, I.; Kang, P.; Park, Y. -J.; Kim, C. -M.: Routes to complete synchronization via phase synchronization in coupled nonidentical chaotic oscillators, Phys rev E 66, No. 4, 015205 (2002)
[14] Boccaletti, S.; Valladares, D. L.: Characterization of intermittent lag synchronization, Phys rev E 62, 7497-7500 (2000)
[15] Voss, H. U.: Anticipating chaotic synchronization, Phys rev E 61, 5115-5119 (2000)
[16] Masoller, C.: Anticipation in the synchronization of chaotic time-delay systems, Physica A 295, 301-304 (2001) · Zbl 0978.37022 · doi:10.1016/S0378-4371(01)00092-9
[17] Gonzalez-Miranda, J. M.: Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving, Phys rev E 57, 7321-7324 (1998)
[18] Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems, Phys rev lett 82, 3042-3045 (1999)
[19] Xu, D.: Control of projective synchronization in chaotic systems, Phys rev E 63, No. 4, 027201 (2001)
[20] Grassi, G.; Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal, IEEE trans circuits syst I 44, 1011-1114 (1997)
[21] Grassi, G.; Miller, D. A.: Theory and experimental realization of observer-based discrete-time hyperchaos synchronization, IEEE trans circuits syst I 49, 373-378 (2002)
[22] Pyragas, K.: Analytical estimations synchronization of coupled time-delay systems, Phys rev E 58, 3067-3071 (1998)
[23] He, R.; Vaidya, P. G.: Time delayed chaotic systems and their synchronization, Phys rev E 59, 4048-4051 (1999)
[24] Moiola, J. L.; Chiacchiarini, H. G.; Desages, A. C.: Bifurcations and Hopf degeneracies in nonlinear feedback systems with time delay, Int J bifurcat chaos 6, 661-672 (1996) · Zbl 0875.93183 · doi:10.1142/S0218127496000333
[25] Xu, D.; Li, Z.; Bishop, S. R.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos 11, 439 (2001) · Zbl 0996.37075 · doi:10.1063/1.1380370
[26] Mackey, M. C.; Glass, L.: Oscillation and chaos in physiological control systems, Science 197, 287-289 (1977)
[27] Lu, H.; He, Y.; He, Z.: A chaos-generator: analyses of complex dynamics of a cell equation in delayed cellular neural, IEEE trans circuits syst I 45, 178 (1998)
[28] Hu, M.; Yang, Y.; Xu, Z.; Zhang, R.; Guo, L.: Projective synchronization in drive-response dynamical networks, Physica A 381, 457-466 (2007)
[29] Ghosh, D.; Chowdhury, A. Roy; Saha, P.: Multiple delay Rössler system bifurcation and chaos control, Chaos solitons fractals 35, 472-485 (2008) · Zbl 1139.34059
[30] Banerjee, S.; Ghosh, D.; Chowdhury, A. Roy: Multiplexing synchronization and its applications in cryptography, Phys scr 78, No. 7, 015010 (2008) · Zbl 1166.34041
[31] Rossler, O. E.: An equation for continuous chaos, Phys lett A 57, 397-398 (1996)
[32] Ghosh, D.; Banerjee, S.; Chowdhury, A. Roy: Synchronization between variable time-delayed systems and cryptography, Europhys lett 80, 30006 (2007)
[33] Banerjee, S.; Ghosh, D.; Ray, A.; Chowdhury, A. Roy: Synchronization between two different time-delayed systems and image encryption, Europhys lett 81, 20006 (2008)
[34] Short, K. M.; Parker, A. T.: Unmasking a hyperchaotic communication scheme, Phys rev E 58, 1159-1162 (1998)