zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetries for a family of Boussinesq equations with nonlinear dispersion. (English) Zbl 1221.35326
Summary: We make a full analysis of a family of Boussinesq equations which include nonlinear dispersion by using the classical Lie method of infinitesimals. We consider travelling wave reductions and we present some explicit solutions: solitons and compactons.For this family, we derive nonclassical and potential symmetries. We prove that the nonclassical method applied to these equations leads to new symmetries, which cannot be obtained by Lie classical method. We write the equations in a conserved form and we obtain a new class of nonlocal symmetries. We also obtain some Type-II hidden symmetries of a Boussinesq equation.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35A30Geometric theory for PDE, characteristics, transformations
Software:
SYM; SYMMGRP.MAX
WorldCat.org
Full Text: DOI
References:
[1] Abraham-Shrauner, B.; Govinder, K. S.: Provenance of type II hidden symmetries from nonlinear partial differential equations, J nonlinear math phys 13, 612-622 (2006) · Zbl 1110.35321 · doi:10.2991/jnmp.2006.13.4.12
[2] Bluman, G. W.; Cole, J.: Phys J math mech, Phys J math mech 18, 1025 (1969)
[3] Bluman, G. W.; Kumei, S.: J math phys, J math phys 5, 1019 (1980)
[4] Boussinesq, M. J.: C R acad sci Paris, C R acad sci Paris 72, 755 (1871)
[5] Boussinesq, M. J.: J math pures appl ser, J math pures appl ser 7, 55 (1872)
[6] Bruzón MS, Gandarias ML, Ramírez J. Proceedings of the international conference SPT; 2001.
[7] Champagne, B.; Hereman, W.; Winternitz, P.: Comp phys comm, Comp phys comm 66, 319 (1991)
[8] Dimas S, Tsoubelis D, SYM: a new symmetry-finding package for Mathematica. In: Proceedings of the 10th international conference in modern group analysis; 2004. p. 64 -- 70.
[9] Dimas S, Tsoubelis D. A new heuristic algorithm for solving overdetermined systems of PDEs in mathematica. In: Proceedings of the 6th international conference on symmetry in nonlinear mathematical physics, Kiev, Ukraine; 2005.
[10] Clarkson, P. A.: Chaos solitons fract, Chaos solitons fract 5, 2261 (1995)
[11] Gandarias, M. L.: Crm, Crm 25, 161 (2000)
[12] Gandarias ML. Type-II hidden symmetries for some nonlinear partial differential equations. In: Proceedings of the 12th international conference in modern group analysis; 2008. · Zbl 1149.35006
[13] Gandarias, M. L.; Bruzón, M. S.: J nonlinear math phys, J nonlinear math phys 5, 8 (1998)
[14] Olver, P. J.: Applications of Lie groups to differential equations, (1986) · Zbl 0588.22001
[15] Rosenau, P.: J phys lett A, J phys lett A 275, 193 (2000)
[16] Rosenau, P.: Phys rev lett, Phys rev lett 73, 1737 (1994)