zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New travelling wave solutions to the Boussinesq and the Klein-Gordon equations. (English) Zbl 1221.35372
Summary: Many new travelling wave solutions are established for the Boussinesq and the Klein-Gordon equations. The extended tanh method, the rational hyperbolic functions method, and the rational exponential functions method are used to generate these new solutions. The new solutions are bell-shaped solitons, periodic, and complex solutions. The proposed approaches are also applicable to a large variety of nonlinear evolution equations.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
76D33Waves in incompressible viscous fluids
WorldCat.org
Full Text: DOI
References:
[1] Sirendaoreji: Auxiliary equation method and new solutions of Klein -- Gordon equations, Chaos, solitons & fractals 31, No. 4, 943-950 (2007) · Zbl 1143.35341 · doi:10.1016/j.chaos.2005.10.048
[2] Sirendaoreji: A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Phys lett A 356, No. 2, 124-130 (2006) · Zbl 1160.35527 · doi:10.1016/j.physleta.2006.03.034
[3] Parker A , Dye JM. Boussinesq-type equations and switching solitons. In: Proc of institute of NAS of Ukraine 43(1); 2002: 344 -- 51. · Zbl 1034.37040
[4] Yan, Z.: Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation. II: solitary patterns solutions, Chaos, solitons & fractals 18, No. 4, 869-880 (2003) · Zbl 1068.35148 · doi:10.1016/S0960-0779(03)00059-6
[5] Yan, Z.: New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations, Comput phys commun 149, No. 1, 11-18 (2002) · Zbl 1196.68338 · doi:10.1016/S0010-4655(02)00587-8
[6] Yan, Z.: Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable daveystewartson-type equation via a new method, Chaos, solitons & fractals 18, No. 2, 299-309 (2003) · Zbl 1069.37060
[7] Yan, Z.: Envelope compactons and solitary patterns, Phys lett A 355, No. 3, 212-215 (2006)
[8] Kaya, D.: Explicit solutions of generalized nonlinear Boussinesq equations, J appl math 1, No. 1, 29-37 (2001) · Zbl 0976.35066 · doi:10.1155/S1110757X01000067
[9] Polyanin, A. D.; Zaitsev, V. E.: Handbook of nonlinear partial differential equations, (2004) · Zbl 1053.35001
[10] Khater, A. H.; Hasan, M. M.: Travelling and periodic wave solutions of some nonlinear wave equations, Z. naturforsch 59a, No. 7/8, 389-396 (2004)
[11] Malfliet, W.: Solitary wave solutions of nonlinear wave equations, Am J phys 60, No. 7, 650-654 (1992) · Zbl 1219.35246 · doi:10.1119/1.17120
[12] Malfliet, W.; Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys scripta 54, 563-568 (1996) · Zbl 0942.35034 · doi:10.1088/0031-8949/54/6/003
[13] Malfliet, W.; Hereman, W.: The tanh method: II. Perturbation technique for conservative systems, Phys scripta 54, 569-575 (1996) · Zbl 0942.35035 · doi:10.1088/0031-8949/54/6/004
[14] Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations, Appl math comput 154, No. 3, 713-723 (2004) · Zbl 1054.65106 · doi:10.1016/S0096-3003(03)00745-8
[15] Wazwaz, A. M.: The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl math comput 49, 565-574 (2005) · Zbl 1082.65585
[16] Wazwaz, A. M.: Partial differential equations: methods and applications, (2002) · Zbl 1079.35001
[17] Wazwaz, A. M.: Solitary wave solutions for modified forms of the Degasperis -- Procesi and Camassa -- Holm and equations, Phys lett A 352, 500-504 (2006) · Zbl 1187.35199 · doi:10.1016/j.physleta.2005.12.036
[18] Wazwaz, A. M.: A study on nonlinear dispersive partial differential equations of compact and noncompact solutions, Appl math comput 135, No. 2 -- 3, 399-409 (2003) · Zbl 1027.35120 · doi:10.1016/S0096-3003(02)00005-X
[19] Wazwaz, A. M.: A construction of compact and noncompact solutions of nonlinear dispersive equations of even order, Appl math comput 135, No. 2 -- 3, 324-411 (2003) · Zbl 1027.35121 · doi:10.1016/S0096-3003(02)00006-1
[20] Wazwaz, A. M.: Compactons in a class of nonlinear dispersive equations, Math comput model 37, No. 3/4, 333-341 (2003) · Zbl 1044.35078 · doi:10.1016/S0895-7177(03)00010-4
[21] Wazwaz, A. M.: Variants of the two-dimensional Boussinesq equations with compactons, solitons and periodic solutions, Comput math appl 49, 295-301 (2005) · Zbl 1070.35042 · doi:10.1016/j.camwa.2004.06.029
[22] Wazwaz, A. M.: New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations, Chaos, solitons & compactons 22, No. 1, 249-260 (2004) · Zbl 1062.35121
[23] Wazwaz, A. M.: Special types of the nonlinear dispersive Zakharov -- Kuznetsov equation with compactons, solitons and periodic solutions, Int J comput math 81, No. 9, 1107-1119 (2004) · Zbl 1059.35131 · doi:10.1080/00207160410001684253
[24] Wazwaz, A. M.: A class of nonlinear fourth order variant of a generalized Camassa -- Holm equation with compact and noncompact solutions, Appl math comput 165, 485-501 (2005) · Zbl 1070.35044 · doi:10.1016/j.amc.2004.04.029