zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical behaviors of reaction-diffusion fuzzy neural networks with mixed delays and general boundary conditions. (English) Zbl 1221.35441
Summary: We study delayed reaction-diffusion fuzzy neural networks with general boundary conditions. By using topology degree theory and constructing suitable Lyapunov functional, some sufficient conditions are given to ensure the existence, uniqueness and globally exponential stability of the equilibrium point. Finally, an example is given to verify the theoretical analysis.

35R13Fuzzy partial differential equations
35K57Reaction-diffusion equations
92B20General theory of neural networks (mathematical biology)
Full Text: DOI
[1] Yang, T.; Yang, L.: The global stability of fuzzy cellular neural network, IEEE trans circ syst I 43, No. 10, 880-883 (1996)
[2] Yang, T.; Yang, L.: Fuzzy cellular neural network: a new paradigm for image processing, Int J circ theory appl 25, No. 6, 469-481 (1997)
[3] Montseny, E.; Sobrevilla, P.: Application of fuzzy techniques to the design of algorithms in computer vision, Mathware soft comput 2-3, 223-230 (1998) · Zbl 0969.68672
[4] Wang, S.; Fu, D.; Xu, M.; Hu, D.: Advanced fuzzy cellular neural network: application to CT liver images, Artif intell med 39, 65-77 (2007)
[5] Yao, Y.; Zhang, T.: Fuzzy cellular neural network and its application in chinese character reconstruction, Chin J comput res dev 36, No. 3, 282-286 (1999)
[6] Liu, Y.; Tang, W.: Exponential stability of fuzzy cellular neural networks with constant and time-varying delays, Phys lett A 323, 224-233 (2004) · Zbl 1118.81400 · doi:10.1016/j.physleta.2004.01.064
[7] Huang, T.: Exponential stability of fuzzy cellular neural networks with unbounded distributed delay, Phys lett A 351, 44-52 (2006) · Zbl 1234.82016
[8] Wang, J.; Lu, J.: Globally exponential stability of fuzzy cellular neural networks with delays and reaction -- diffusion terms, Chaos soliton fract 38, 878-885 (2008) · Zbl 1146.35315 · doi:10.1016/j.chaos.2007.01.032
[9] Huang, T.: Exponential stability of delayed fuzzy cellular neural networks with diffusion, Chaos soliton fract 31, 658-664 (2007) · Zbl 1138.35414 · doi:10.1016/j.chaos.2005.10.015
[10] Gilbarg, D.; Trudinger, N.: Elliptic partial differential equations of second order, (1977) · Zbl 0361.35003
[11] Cronin, J.: Fixed point and topological degree in nonlinear analysis, (1964) · Zbl 0117.34803