zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical study of pattern formation in an extended Gray-Scott model. (English) Zbl 1221.35456
Summary: We present the temporal evolution of noise-controlled patterns in a spatially extended Gray-Scott model firstly. We show that the model exhibits a transition from stripe-spot growth to isolated spots, and also to spiral replication. Furthermore, we establish an extended Gray-Scott model with time-varying diffusivity, and find that the patterns exhibit transition from stripe-spot growth to stripe-spot or chaos replication. Additional studies reveal that with noise and time-varying diffusivity together, a new time-dependent pattern -- a few of stripes oscillate in the “red” region -- emerges, which hasn’t been reported before.

35R60PDEs with randomness, stochastic PDE
35K40Systems of second-order parabolic equations, general
60G35Signal detection and filtering (stochastic processes)
65M06Finite difference methods (IVP of PDE)
Full Text: DOI
[1] Gierer, A.; Meinhardt, H.: A theory of biological pattern formation, Biol cybern 12, 30-39 (1972) · Zbl 0297.92007
[2] Cross, M. C.; Hohenberg, P. H.: Pattern formation outside of equilibrium, Rev mod phys 65, 851-1112 (1993)
[3] Garvie, M.: Finite-difference schemes for reaction -- diffusion equations modeling predator -- prey interactions in Matlab, Bull math biol 69, 931-956 (2007) · Zbl 1298.92081
[4] Mcgough, J. S.; Riley, K.: Pattern formation in the gray -- Scott model, Nonlinear anal 5, 105-121 (2004) · Zbl 1097.35071 · doi:10.1016/S1468-1218(03)00020-8
[5] Jung, P.; Mayer-Kress, G.: Spatiotemporal stochastic resonance in excitable media, Phys rev lett 74, 2130-2133 (1995)
[6] Kyrychko, Y. N.; Blyuss, K. B.; Hogan, S. J.; Schöll, E.: Control of spatiotemporal patterns in the gray -- Scott model, Chaos 19, 043126 (2009)
[7] Lee, K. J.; Mccormick, W. D.; Ouyang, Q.; Swinney, H. L.: Pattern formation by interacting chemical fronts, Science 261, 192-194 (1993)
[8] Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L.: Effects of noise in excitable systems, Phys rep 392, 321-424 (2004)
[9] Malchow, H.; Petrovskii, S. V.: Dynamical stabilization of an unstable equilibrium in chemical and biological systems, Math comput model 36, 307-319 (2002) · Zbl 1021.92026 · doi:10.1016/S0895-7177(02)00127-9
[10] Nishiura, Y.; Ueyama, D.: Spatio-temporal chaos for the gray -- Scott model, Phys D 150, 137-162 (2001) · Zbl 0981.35022 · doi:10.1016/S0167-2789(00)00214-1
[11] Perc, M.: Spatial coherence resonance in excitable media, Phys rev E 72, 016207 (2005)
[12] Mazin, W.; Rasmussen, K. E.; Mosekilde, E.; Borckmans, P.; Dewel, G.: Pattern formation in the bistable gray -- Scott model, Math comput simulat 40, 371-396 (1996) · Zbl 0881.92038
[13] Muratov, C. B.; Osipov, V. V.: Spike autosolitons and pattern formation scenarios in the two-dimensional gray -- Scott model, European phys J.B 22, 213-221 (2001) · Zbl 0986.34023
[14] Rovinsky, A.; Menzinger, M.: Interaction of Turing and Hopf bifurcations in chemical systems, Phys rev A 46, 6315-6322 (1992)
[15] Wang, H.; Zhang, K.; Ouyang, Q.: Resonant-pattern formation induced by additive noise in periodically forced reaction -- diffusion systems, Phys rev E 74, 036210 (2006)
[16] Wang, W.; Liu, Q.; Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator -- prey system, Phys rev E 75, 051913 (2007)
[17] Wei, J.; Winter, M.: Stationary multiple spots for reaction -- diffusion systems, J math biol 57, 53-89 (2008) · Zbl 1141.92007 · doi:10.1007/s00285-007-0146-y
[18] Gray, P.; Scott, S. K.: Sustained oscillations and other exotic patterns of behavior in isothermal reactions, J phys chem 89, 22-32 (1985)
[19] Munteanu, A.; Solé, R. V.: Pattern formation in noisy self-replicating spots, Int J bif chaos 16, 3679-3685 (2006) · Zbl 1113.92007 · doi:10.1142/S0218127406017063
[20] Pearson, J. E.: Complex patterns in a simple system, Science 261, 189-192 (1993)
[21] Lesmes, F.; Hochberg, D.; Morán, F.; Pérez-Mercader, J.: Noise-controlled self-replicating patterns, Phys rev lett 91, 238301 (2003)
[22] Hale, J. K.; Peletier, L. A.; Troy, W. C.: Stability and instability in the gray -- Scott model: the case of equal diffusivities, Appl math lett 12, 59-65 (1999) · Zbl 0936.92034 · doi:10.1016/S0893-9659(99)00035-X
[23] Hale, J. K.; Peletier, L. A.; Troy, W. C.: Exact homoclinic and heteroclinic solutions of the gray -- Scott model for autocatalysis, SIAM J appl math 61, 102-130 (2000) · Zbl 0965.34037 · doi:10.1137/S0036139998334913
[24] Kolokolnikov, T.; Ward, M. J.; Wei, J.: Zigzag and breakup instabilities of stripes and rings in the two-dimensional gray -- Scott model, Studies appl math 116, 35-95 (2006) · Zbl 1145.35388 · doi:10.1111/j.1365-2966.2005.0333.x
[25] Hayase, Y.; Brand, H. R.: The gray -- Scott model under the influence of noise: reentrant spatiotemporal intermittency in a reaction -- diffusion system, J chem phys 123, 124507 (2005)
[26] Garcı&acute, J.; A-Ojalvo; Sancho, J. M.: Noise in spatially extended systems, (1999) · Zbl 0938.60002
[27] Sagués, F.; Sancho, J.; Garcı&acute, J.; A-Ojalvo: Spatiotemporal order out of noise, Rev mod phys 79, 829-882 (2007)
[28] Perc, M.: Persistency of noise-induced spatial periodicity in excitable media, Europhys lett 72, 712-718 (2005)
[29] Gosak, M.; Marhl, M.; Perc, M.: Spatial coherence resonance in excitable biochemical media induced by internal noise, Biophys chem 128, 210-214 (2007)
[30] Perc, M.: Noise-induced spatial periodicity in excitable chemical media, Chem phys lett 410, 49-53 (2005)
[31] Perc, M.; Marhl, M.: Minimal model for spatial coherence resonance, Phys rev E 73, 066205 (2006)
[32] Perc, M.; Gosak, M.; Marhl, M.: Periodic calcium waves in coupled cells induced by internal noise, Chem phys lett 437, 143-147 (2007)
[33] Perc, M.; Szolnoki, A.: Noise-guided evolution within cyclical interactions, New J phys 9, 267 (2007)
[34] Wang, H.; Fu, Z.; Xu, X.; Ouyang, Q.: Pattern formation induced by internal microscopic fluctuations, J phys chem A 111, 1265-1270 (2007)
[35] Nekhamkina, O.; Sheintuch, M.: Boundary-induced patterns in excitable systems: the structure of oscillatory domain, Phys rev E 75, 056210 (2007)
[36] Jiang, L.; Zhou, T.; Perc, M.; Huang, X.; Wang, B.: Emergence of target waves in paced populations of cyclically competing species, New J phys 11, 103001 (2009)
[37] Okubo, A.; Levin, S. A.: Diffusion and ecological problems: modern perspectives, (2001) · Zbl 1027.92022
[38] Sherratt, J. A.: Turing bifurcations with a temporally varying diffusion coefficient, J math biol 33, 295-308 (1995) · Zbl 0812.92024 · doi:10.1007/BF00169566
[39] Benson, D. L.; Maini, P. K.; Sherratt, J. A.: Unravelling the Turing bifurcation using spatially varying diffusion coefficients, J math biol 37, 381-417 (1998) · Zbl 0919.92006 · doi:10.1007/s002850050135
[40] Bhattacharyya, R.; Mukhopadhyay, B.; Bandyopadhyay, M.: Diffusive instability in a prey -- predator system with time-dependent diffusivity, Int J math math sci 2003, 4195-4203 (2003) · Zbl 1032.37053 · doi:10.1155/S0161171203207274
[41] Webb, S. D.; Sherratt, J. A.: Oscillatory reaction -- diffusion equations with temporally varying parameters, Math comput model 39, 45-60 (2004) · Zbl 1049.35104 · doi:10.1016/S0895-7177(04)90505-5
[42] Mukhopadhyay, B.; Bhattacharyya, R.: Modeling the role of diffusion coefficients on Turing instability in a reaction -- diffusion prey -- predator system, Bull math biol 68, 293-313 (2006)