zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integrable couplings of the multi-component Dirac hierarchy and its Hamiltonian structure. (English) Zbl 1221.37130
The authors obtain multi-component integrable couplings of the Dirac hierarchy by using the vector loop algebra $\widetilde G_M$. Then, according to the quadratic-form identity, the Hamiltonian structure of the above system is presented.

MSC:
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
WorldCat.org
Full Text: DOI
References:
[1] Tu, Guizhang: J math phys, J math phys 30, No. 2, 330-338 (1989)
[2] Ma, Wenxiu: Chinese J contemp math, Chinese J contemp math 13, No. 1, 79-89 (1992)
[3] Fan, Engui: J math phys, J math phys 41, No. 11, 7769 (2000)
[4] Zhang, Dajun; Chen, Dengyuan: J phys A: math gen, J phys A: math gen 35, 7225 (2002)
[5] Zhang, Yufeng; Yan, Qingyou: Chaos, soliton & fractals, Chaos, soliton & fractals, No. 16, 263 (2003)
[6] Zhang, Yufeng: Phys lett A, Phys lett A 317, No. 3, 280-286 (2003) · Zbl 1027.37042
[7] Zhang, Yufeng: Acta Mathematica sinica, Acta Mathematica sinica, No. 1, 141 (2005)
[8] Zhang, Yufeng; Zhang, Hongqing: J math phys, J math phys 43, 466-473 (2002)
[9] Guo, Fukui; Zhang, Yufeng: Chaos, soliton & fractals, Chaos, soliton & fractals 19, No. 5, 1207-1216 (2004)
[10] Guo, Fukui; Zhang, Yufeng: J math phys, J math phys 44, No. 12, 5793-5803 (2003)
[11] Zhang, Yufeng: Chaos, soliton & fractals, Chaos, soliton & fractals, No. 27, 555-559 (2002)
[12] Zhang, Yufeng: Phys lett A, Phys lett A 327, 438-441 (2004)
[13] Zhang, Yufeng: Chaos, soliton & fractals, Chaos, soliton & fractals, No. 21, 305-310 (2004)
[14] Xia, Tiecheng: Chaos, soliton & fractals, Chaos, soliton & fractals, No. 23, 1163-1167 (2005) · Zbl 1070.35045
[15] Zhang, Yufeng; Tam, Honwah: Chaos, soliton & fractals, Chaos, soliton & fractals, No. 23, 651-655 (2005)
[16] Dong, Huanhe; Zhang, Ning: Commun theor phys, Commun theor phys 44, No. 6, 997-1001 (2005)
[17] Xia, Tiecheng; You, Fucai: Chaos, soliton & fractals, Chaos, soliton & fractals, No. 26, 606-613 (2005)
[18] Guo, Fukui; Zhang, Yufeng: J phys A: math gen, J phys A: math gen 38, 8537-8548 (2005)
[19] Qiao, Zhijun: Chinese quart J math, Chinese quart J math 12, No. 1, 1-3 (1997)