zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global dynamics of an HIV-1 infection model with distributed intracellular delays. (English) Zbl 1221.37204
Summary: In this paper, an HIV-1 infection model with distributed intracellular delays is investigated, where the intracellular delays account for the time the target cells are contacted by the virus particles and the time the contacted cells become actively infected meaning that the contacting virions enter cells and the time the virus has penetrated into a cell and the time the new virions are created within the cell and are released from the cell, respectively. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and LaSalle’s invariance principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable; and if the basic reproduction ratio is greater than unity, the chronic-infection equilibrium is globally asymptotically stable.

37N25Dynamical systems in biology
34D23Global stability of ODE
34K20Stability theory of functional-differential equations
Full Text: DOI
[1] Bonhoeffer, S.; May, R. M.; Shaw, G. M.; Nowak, M. A.: Virus dynamics and drug therapy, Proc. natl. Acad. sci. USA 94, 6971-6976 (1997)
[2] Ho, D.; Neumann, A.; Perelson, A.; Chen, W.; Leonard, J.; Markowitz, M.: Rapid turnover of plasma virions and CD4+ lymphocytes in HIV-1 infection, Nature 373, 123-126 (1995)
[3] Nowak, M.; Bonhoeffer, S.; Shaw, G.; May, R.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. theor. Biol. 184, 205 (1997)
[4] Perelson, A.; Kirschner, D.; De Boer, R.: Dynamics of HIV infection of CD4+ T cells, Math. biosci. 114, 81 (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[5] Perelson, A.; Nelson, P.: Mathematical analysis of HIV-1 dynamics in vivo, SIAM rev. 41, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[6] Perelson, A.; Neumann, A.; Markowitz, M.; Leonard, J.; Ho, D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271, 1582 (1996)
[7] Wang, Y.; Zhou, Y.; Wu, J.; Heffernan, J.: Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. biosci. 219, 104-112 (2009) · Zbl 1168.92031 · doi:10.1016/j.mbs.2009.03.003
[8] Nowak, M.; Anderson, R.; Boerlijst, M.; Bonhoeffer, S.; May, R.; Mcmichael, A.: HIV-1 evolution and disease progression, Science 274, 1008 (1996)
[9] Mittler, J. E.; Sulzer, B.; Neumann, A. U.; Perelson, A. S.: Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. biosci. 152, 143-163 (1998) · Zbl 0946.92011 · doi:10.1016/S0025-5564(98)10027-5
[10] Culshaw, R. V.; Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T cells, Math. biosci. 165, 27-39 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[11] Culshaw, R. V.; Ruan, S.; Webb, G.: A mathematical model of cell-to-cell HIV-1 that include a time delay, J. math. Biol. 46, 425-444 (2003) · Zbl 1023.92011 · doi:10.1007/s00285-002-0191-5
[12] Herz, A. V. M.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. natl. Acad. sci. USA 93, 7247-7251 (1996)
[13] Mittler, J. E.; Markowitz, B.; Ho, D. D.; Perelson, A. S.: Improved estimates for HIV-1 clearance rate and intracellular delay, Aids 13, 1415-1417 (1999)
[14] Nelson, P. W.; Murray, J. D.; Perelson, A. S.: A model of HIV-1 pathogenesis that includes an intracellular delay, Math. biosci. 163, 201-215 (2000) · Zbl 0942.92017 · doi:10.1016/S0025-5564(99)00055-3
[15] Nelson, P. W.; Perelson, A. S.: Mathematical analysis of delay differential equation models of HIV-1 infection, Math. biosci. 179, 73-94 (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[16] Tam, J.: Delay effect in a model for virus replication, IMA J. Math. appl. Med. biol. 16, 29-37 (1999) · Zbl 0914.92012
[17] Wang, K.; Wang, W.; Pang, H.; Liu, X.: Complex dynamic behavior in a viral model with delayed immune response, Physica D 226, 197-208 (2007) · Zbl 1117.34081 · doi:10.1016/j.physd.2006.12.001
[18] Zhu, H.; Zou, X.: Impact of delays in cell infection and virus production on HIV-1 dynamics, Math. med. Biol. 25, 99-112 (2008) · Zbl 1155.92031 · doi:10.1093/imammb/dqm010
[19] Li, M. Y.; Shu, H.: Global dynamics of an in-host viral model with intracellular delay, Bull. math. Biol. 72, 1492-1505 (2010) · Zbl 1198.92034 · doi:10.1007/s11538-010-9503-x
[20] Hale, J. K.; Lunel, S. Verduyn: Introduction to functional differential equations, (1993) · Zbl 0787.34002
[21] Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002