zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive synchronization for a chaotic system with channel time-delay. (English) Zbl 1221.37214
Summary: This paper discusses the synchronization of the chaotic system. Some new and less conservative sufficient conditions are established by impulsive control method with channel time-delay and different time-varying parameter uncertainties. An example and its simulations are finally included to visualize the effectiveness and feasibility of the method.

37N35Dynamical systems in control
37D45Strange attractors, chaotic dynamics
34A37Differential equations with impulses
Full Text: DOI
[1] Lorenz, E. N.: Deterministic nonperiodic flow, J atmos sci 20, 130 (1963)
[2] Chen, G.; Ueta, T.: Yet another chaotic attractor, Int J bifurcat chaos 9, 1465 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[3] Matsumoto, T.; Chua, L. O.; Kobayashi, K.: Hyperchaos: laboratory experiment and numerical confirmation, IEEE trans circuits syst 33, 1143 (1986)
[4] Li, Y.; Tang, S. K.; Chen, G.: Generating hyperchaos via state feedback control, Int J bifurcat chaos 15, No. 10, 3367 (2005)
[5] Yan, Z.: Controlling hyperchaos in the new hyperchaotic Chen system, Appl math comput 168, 1239 (2005) · Zbl 1160.93384 · doi:10.1016/j.amc.2004.10.016
[6] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys rev lett 64, 1196 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[7] Pecora, L.; Carroll, T.: Synchronization in chaotic systems, Phys rev lett 64, 821 (1990) · Zbl 0938.37019
[8] Wu, X.; Lu, J.: Parameter identification and backstepping control of uncertain L system, Chaos solitons fractals 18, 721 (2003) · Zbl 1068.93019 · doi:10.1016/S0960-0779(02)00659-8
[9] Wu, X.; Lu, J.: Adaptive control of uncertain L system, Chaos solitons fractals 22, 375 (2004) · Zbl 1062.93516 · doi:10.1016/j.chaos.2004.02.012
[10] Lu, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems, Chaos solitons fractals 14, 529 (2002) · Zbl 1067.37043 · doi:10.1016/S0960-0779(02)00005-X
[11] Guan, Z.: Decentralized stabilization for impulsive large scale systems with delays, Dynam continuous discrete impuls syst 6, 369 (1999) · Zbl 0934.93009
[12] Lu, J.; Wu, X.; Lii, J.: Synchronization of a unified chaotic system and the application in secure communication, Phys lett A 305, 365 (2002) · Zbl 1005.37012 · doi:10.1016/S0375-9601(02)01497-4
[13] Brown, R.; Kocarev, L.: A unified definition of synchronization for dynamical systems, Chaos 10, 344-349 (2000) · Zbl 0973.34041 · doi:10.1063/1.166500
[14] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[15] Chen, M. Y.; Han, Z. Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos solitons fractals 17, 709-716 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[16] Huang, H.; Li, H. X.; Zhong, J.: Master-slave synchronization of general Lur’e systems with time-varying delay and parameter uncertainty, Int J bifurcat chaos 16, 281-294 (2006) · Zbl 1097.94004 · doi:10.1142/S0218127406014800
[17] Zhang, H.; Ma, X. K.; Liu, W. Z.: Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos solitons fractals 21, 1249-1257 (2004) · Zbl 1061.93514 · doi:10.1016/j.chaos.2003.12.073
[18] Xia, Y.; Yang, Z.; Han, M.: Lag synchronization of unknown chaotic delayed yangcyang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification, IEEE trans neural networks 20, No. 7, 1165-1180 (2009)
[19] Xia, Y.; Yang, Z.; Han, M.: Synchronization schemes for coupled identical yangcyang type fuzzy cellular neural networks, Commun nonlinear sci numer simulat 14, 3645-3659 (2009) · Zbl 1221.37227 · doi:10.1016/j.cnsns.2009.01.028
[20] Ding, W.; Han, M.: Synchronization of delayed fuzzy cellular neural networks based on adaptive control, Phys lett A 372, 4674-4681 (2008) · Zbl 1221.94094 · doi:10.1016/j.physleta.2008.04.053
[21] Zhang, H. G.; Xie, Y. H.; Wang, Z. L.; Zhen, C. D.: Adaptive synchronization between two different chaotic neural networks with time delay, IEEE trans neural networks 18, 1841-1845 (2007)
[22] Chen, D. L.; Sun, J. T.; Huang, C. S.: Impulsive control and synchronization of general chaotic system, Chaos solitons fractals 28, 213-218 (2006) · Zbl 1091.93023 · doi:10.1016/j.chaos.2005.05.057
[23] Zhang, H.; Ma, X. K.: Synchronization of uncertain chaotic systems with parametric perturbation via active control, Chaos solitons fractals 21, 39-47 (2004) · Zbl 1048.37031 · doi:10.1016/j.chaos.2003.09.014
[24] Yuxia, L.; Wallace, K.; Chen, G.: Generating hyperchaos via state feedback control, Int J bifurcat chaos 15, 3367-3375 (2005)
[25] Al-Sawalha, M. Mossa; Noorani, M. S. M.: Anti-synchronization of two hyperchaotic systems via nonlinear control, Commun nonlinear sci numer simulat 14, No. 8, 3402-3411 (2009) · Zbl 1221.37210 · doi:10.1016/j.cnsns.2008.12.021
[26] Jiang, G. P.; Zheng, W. X.; Chen, G. R.: Global chaos synchronization with channel time-delay, Chaos solitons fractals 20, 267-275 (2004) · Zbl 1045.34021 · doi:10.1016/S0960-0779(03)00374-6