Impulsive synchronization for a chaotic system with channel time-delay. (English) Zbl 1221.37214

Summary: This paper discusses the synchronization of the chaotic system. Some new and less conservative sufficient conditions are established by impulsive control method with channel time-delay and different time-varying parameter uncertainties. An example and its simulations are finally included to visualize the effectiveness and feasibility of the method.


37N35 Dynamical systems in control
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34D06 Synchronization of solutions to ordinary differential equations
34A37 Ordinary differential equations with impulses
Full Text: DOI


[1] Lorenz, E. N., Deterministic nonperiodic flow, J Atmos Sci, 20, 130 (1963) · Zbl 1417.37129
[2] Chen, G.; Ueta, T., Yet another chaotic attractor, Int J Bifurcat Chaos, 9, 1465 (1999) · Zbl 0962.37013
[3] Matsumoto, T.; Chua, L. O.; Kobayashi, K., Hyperchaos: laboratory experiment and numerical confirmation, IEEE Trans Circuits Syst, 33, 1143 (1986)
[4] Li, Y.; Tang, S. K.; Chen, G., Generating hyperchaos via state feedback control, Int J Bifurcat Chaos, 15, 10, 3367 (2005)
[5] Yan, Z., Controlling hyperchaos in the new hyperchaotic Chen system, Appl Math Comput, 168, 1239 (2005) · Zbl 1160.93384
[6] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys Rev Lett, 64, 1196 (1990) · Zbl 0964.37501
[7] Pecora, L.; Carroll, T., Synchronization in chaotic systems, Phys Rev Lett, 64, 821 (1990) · Zbl 0938.37019
[8] Wu, X.; Lu, J., Parameter identification and backstepping control of uncertain L system, Chaos Solitons Fractals, 18, 721 (2003) · Zbl 1068.93019
[9] Wu, X.; Lu, J., Adaptive control of uncertain L system, Chaos Solitons Fractals, 22, 375 (2004)
[10] Lu, J.; Zhou, T.; Zhang, S., Chaos synchronization between linearly coupled chaotic systems, Chaos Solitons Fractals, 14, 529 (2002) · Zbl 1067.37043
[11] Guan, Z., Decentralized stabilization for impulsive large scale systems with delays, Dynam Continuous Discrete Impuls Syst, 6, 369 (1999)
[12] Lu, J.; Wu, X.; Lii, J., Synchronization of a unified chaotic system and the application in secure communication, Phys Lett A, 305, 365 (2002) · Zbl 1005.37012
[13] Brown, R.; Kocarev, L., A unified definition of synchronization for dynamical systems, Chaos, 10, 344-349 (2000) · Zbl 0973.34041
[14] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 821-824 (1990) · Zbl 0938.37019
[15] Chen, M. Y.; Han, Z. Z., Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos Solitons Fractals, 17, 709-716 (2003) · Zbl 1044.93026
[16] Huang, H.; Li, H. X.; Zhong, J., Master-slave synchronization of general Lur’e systems with time-varying delay and parameter uncertainty, Int J Bifurcat Chaos, 16, 281-294 (2006) · Zbl 1097.94004
[17] Zhang, H.; Ma, X. K.; Liu, W. Z., Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos Solitons Fractals, 21, 1249-1257 (2004) · Zbl 1061.93514
[18] Xia, Y.; Yang, Z.; Han, M., Lag synchronization of unknown chaotic delayed YangCYang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification, IEEE Trans Neural Networks, 20, 7, 1165-1180 (2009)
[19] Xia, Y.; Yang, Z.; Han, M., Synchronization schemes for coupled identical YangCYang type fuzzy cellular neural networks, Commun Nonlinear Sci Numer Simulat, 14, 3645-3659 (2009) · Zbl 1221.37227
[20] Ding, W.; Han, M., Synchronization of delayed fuzzy cellular neural networks based on adaptive control, Phys Lett A, 372, 4674-4681 (2008) · Zbl 1221.94094
[21] Zhang, H. G.; Xie, Y. H.; Wang, Z. L.; Zhen, C. D., Adaptive synchronization between two different chaotic neural networks with time delay, IEEE Trans Neural Networks, 18, 1841-1845 (2007)
[22] Chen, D. L.; Sun, J. T.; Huang, C. S., Impulsive control and synchronization of general chaotic system, Chaos Solitons Fractals, 28, 213-218 (2006) · Zbl 1091.93023
[23] Zhang, H.; Ma, X. K., Synchronization of uncertain chaotic systems with parametric perturbation via active control, Chaos Solitons Fractals, 21, 39-47 (2004) · Zbl 1048.37031
[24] Yuxia, L.; Wallace, K.; Chen, G., Generating hyperchaos via state feedback control, Int J Bifurcat Chaos, 15, 3367-3375 (2005)
[25] Mossa Al-Sawalha, M.; Noorani, M. S.M., Anti-synchronization of two hyperchaotic systems via nonlinear control, Commun Nonlinear Sci Numer Simulat, 14, 8, 3402-3411 (2009) · Zbl 1221.37210
[26] Jiang, G. P.; Zheng, W. X.; Chen, G. R., Global chaos synchronization with channel time-delay, Chaos Solitons Fractals, 20, 267-275 (2004) · Zbl 1045.34021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.