zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems. (English) Zbl 1221.37216
Summary: A unifying definition of generalized (complete, lag, anticipated) synchronization in discrete-time chaotic systems is proposed in this paper. Based on the contraction mapping theorem, a new general scheme is proposed for the generalized synchronization of discrete-time chaotic and hyper-chaotic systems. The well-known Hénon mapping and generalized hyper-chaotic Hénon mapping are chosen to illustrate the proposed scheme. Numerical simulations are also shown to verify the effectiveness of the proposed control method.

37N35Dynamical systems in control
93D15Stabilization of systems by feedback
Full Text: DOI
[1] Fujisaka, H.; Yamada, T.: Stability theory of synchronized motion in coupled oscillator systems, Prog theor phys 69, 32-46 (1983) · Zbl 1171.70306 · doi:10.1143/PTP.69.32
[2] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[3] Special issue on control of chaos and synchronization. Syst Contr Lett 1997;31(5):259 -- 322.
[4] Special issue on chaos synchronization and control: theory and application. IEEE Trans Circuits Syst I 1997;44(Oct):853 -- 1039.
[5] Focus issue on control and synchronization of chaos. Chaos 1997;7(4):509 -- 826.
[6] Special issue on control and synchronization of chaos. Int J Bifur Chaos 2000;10(4):695 -- 912.
[7] Special Issue on Control of Oscillations and Chaos. Math Comput Simulation 2002;58:283 -- 505.
[8] Focus Issue on Control and Synchronization in Chaotic Dynamical Systems. Chaos 2003;13(1):126 -- 419.
[9] Chen, G.; Dong, X.: From chaos to order methodologies, perspectives, and applications, world scientific series on nonlinear science, (1998)
[10] Brown, R.; Kocarev, L.: A unifying definition of synchronization for dynamical systems, Chaos 10, No. 2, 344-349 (2000) · Zbl 0973.34041 · doi:10.1063/1.166500
[11] Boccaletti, S.; Pecora, L. M.; Pelaez, A.: Unifying framework for synchronization of coupled dynamical systems, Phys rev E 63, 066219 (2001)
[12] Ge, S. S.; Wang, C.; Lee, T. H.: Adaptive backstepping control of a class of chaotic systems, Int J bifur chaos 10, No. 5, 1149-1156 (2000) · Zbl 1090.34555 · doi:10.1142/S0218127400000815
[13] Yang, T.; Yang, L. B.; Yang, C. M.: Impulsive control of Lorenz system, Physica D 110, 18-24 (1997) · Zbl 0925.93414 · doi:10.1016/S0167-2789(97)00116-4
[14] Kapitaniak, T.: Controlling chaos: theoretical and practical methods in nonlinear dynamics, (1996) · Zbl 0883.58021
[15] Hegazi, A. S.; Agiza, H. N.; El-Dessoky, M.: Adaptive synchronization for Rössler and Chua’s systems, Int J bifur chaos 12, No. 7, 1579-1597 (2002) · Zbl 1047.34060 · doi:10.1142/S0218127402005388
[16] Lu, J.; Cao, J.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos, No. 043901 (2005) · Zbl 1144.37378
[17] Cao, J.; Lu, J.: Adaptive synchronization of neural networks with or without time-varying delay, Chaos 16, No. 013133 (2006) · Zbl 1144.37331
[18] Bai, E. W.; Lonngren, K. E.: Sequential synchronization of two Lorenz systems using active control, Chaos, solitons and fractals 11, No. 7, 1041-1044 (2000) · Zbl 0985.37106 · doi:10.1016/S0960-0779(98)00328-2
[19] Yan, Z.: A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems, Chaos 15, No. 013101 (2005) · Zbl 1080.37040
[20] Yu, X.; Song, Y.: Chaos synchronization via controlling partial state of chaotic systems, Int J bifur chaos 11, No. 1, 1737-1741 (2001)
[21] Cao, J. D.; Li, H. X.; Ho, D. W. C.: Synchronization criteria of Lur’e systems with time-delay feedback control, Chaos, solitons and fractals 23, No. 4, 1285-1298 (2005) · Zbl 1086.93050 · doi:10.1016/j.chaos.2004.06.025
[22] Ushio, T.: Chaotic synchronization and controlling chaos based on contraction mappings, Phys lett A 198, No. 1, 14-22 (1995) · Zbl 1020.37515 · doi:10.1016/0375-9601(94)01015-M
[23] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys rev lett 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[24] Lancaster, P.; Tismenetsky, M.: The theory of matrices, (1985) · Zbl 0558.15001
[25] Kolmogorov, A. N.; Fomin, S. V.: Functional analysis, (1957) · Zbl 0235.46001
[26] Hénon, M.: A two dimensional mapping with a strange attractor, Commun math phys 50, 69-77 (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556
[27] Baier, G.; Klein, M.: Maximum hyperchaos in generalized hénon maps, Phys lett A 151, 281-284 (1990)