×

Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems. (English) Zbl 1221.37216

Summary: A unifying definition of generalized (complete, lag, anticipated) synchronization in discrete-time chaotic systems is proposed in this paper. Based on the contraction mapping theorem, a new general scheme is proposed for the generalized synchronization of discrete-time chaotic and hyper-chaotic systems. The well-known Hénon mapping and generalized hyper-chaotic Hénon mapping are chosen to illustrate the proposed scheme. Numerical simulations are also shown to verify the effectiveness of the proposed control method.

MSC:

37N35 Dynamical systems in control
93D15 Stabilization of systems by feedback
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fujisaka, H.; Yamada, T., Stability theory of synchronized motion in coupled oscillator systems, Prog Theor Phys, 69, 32-46 (1983) · Zbl 1171.70306
[2] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 8, 821-824 (1990) · Zbl 0938.37019
[3] Special issue on control of chaos and synchronization. Syst Contr Lett 1997;31(5):259-322.; Special issue on control of chaos and synchronization. Syst Contr Lett 1997;31(5):259-322. · Zbl 0901.93029
[4] Special issue on chaos synchronization and control: theory and application. IEEE Trans Circuits Syst I 1997;44(Oct):853-1039.; Special issue on chaos synchronization and control: theory and application. IEEE Trans Circuits Syst I 1997;44(Oct):853-1039.
[5] Focus issue on control and synchronization of chaos. Chaos 1997;7(4):509-826.; Focus issue on control and synchronization of chaos. Chaos 1997;7(4):509-826.
[6] Special issue on control and synchronization of chaos. Int J Bifur Chaos 2000;10(4):695-912.; Special issue on control and synchronization of chaos. Int J Bifur Chaos 2000;10(4):695-912.
[7] Special Issue on Control of Oscillations and Chaos. Math Comput Simulation 2002;58:283-505.; Special Issue on Control of Oscillations and Chaos. Math Comput Simulation 2002;58:283-505.
[8] Focus Issue on Control and Synchronization in Chaotic Dynamical Systems. Chaos 2003;13(1):126-419.; Focus Issue on Control and Synchronization in Chaotic Dynamical Systems. Chaos 2003;13(1):126-419.
[9] Chen, G.; Dong, X., From chaos to order methodologies, perspectives, and applications, World scientific series on nonlinear science (1998), World Scientific: World Scientific Singapore · Zbl 0908.93005
[10] Brown, R.; Kocarev, L., A unifying definition of synchronization for dynamical systems, Chaos, 10, 2, 344-349 (2000) · Zbl 0973.34041
[11] Boccaletti, S.; Pecora, L. M.; Pelaez, A., Unifying framework for synchronization of coupled dynamical systems, Phys Rev E, 63, 066219 (2001)
[12] Ge, S. S.; Wang, C.; Lee, T. H., Adaptive backstepping control of a class of chaotic systems, Int J Bifur Chaos, 10, 5, 1149-1156 (2000) · Zbl 1090.34555
[13] Yang, T.; Yang, L. B.; Yang, C. M., Impulsive control of Lorenz system, Physica D, 110, 18-24 (1997) · Zbl 0925.93414
[14] Kapitaniak, T., Controlling chaos: theoretical and practical methods in nonlinear dynamics (1996), Academic press: Academic press London · Zbl 0883.58021
[15] Hegazi, A. S.; Agiza, H. N.; El-Dessoky, M., Adaptive synchronization for Rössler and Chua’s systems, Int J Bifur Chaos, 12, 7, 1579-1597 (2002) · Zbl 1047.34060
[16] Lu, J.; Cao, J., Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos, 043901 (2005) · Zbl 1144.37378
[17] Cao, J.; Lu, J., Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16, 013133 (2006) · Zbl 1144.37331
[18] Bai, E. W.; Lonngren, K. E., Sequential synchronization of two Lorenz systems using active control, Chaos, Solitons and Fractals, 11, 7, 1041-1044 (2000) · Zbl 0985.37106
[19] Yan, Z., A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems, Chaos, 15, 013101 (2005) · Zbl 1080.37040
[20] Yu, X.; Song, Y., Chaos synchronization via controlling partial state of chaotic systems, Int J Bifur Chaos, 11, 1, 1737-1741 (2001)
[21] Cao, J. D.; Li, H. X.; Ho, D. W.C., Synchronization criteria of Lur’e systems with time-delay feedback control, Chaos, Solitons and Fractals, 23, 4, 1285-1298 (2005) · Zbl 1086.93050
[22] Ushio, T., Chaotic synchronization and controlling chaos based on contraction mappings, Phys Lett A, 198, 1, 14-22 (1995) · Zbl 1020.37515
[23] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys Rev Lett, 64, 1196-1199 (1990) · Zbl 0964.37501
[24] Lancaster, P.; Tismenetsky, M., The Theory of Matrices (1985), London Academic Press · Zbl 0516.15018
[25] Kolmogorov, A. N.; Fomin, S. V., Functional analysis (1957), Graylock Press, vol. 1
[26] Hénon, M., A two dimensional mapping with a strange attractor, Commun Math Phys, 50, 69-77 (1976) · Zbl 0576.58018
[27] Baier, G.; Klein, M., Maximum hyperchaos in generalized Hénon maps, Phys Lett A, 151, 281-284 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.