zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization between two different fractional-order hyperchaotic systems. (English) Zbl 1221.37220
Summary: This work investigates chaos synchronization between two different fractional-order hyperchaotic system (FOHS)s. A novel FOHS is also proposed in this paper. The Chen FOHS is controlled to be a new FOHS and the Lü FOHS, respectively. The analytical conditions for the synchronization of these pairs of different FOHSs are derived by utilizing Laplace transform. Furthermore, synchronization between two different FOHSs is achieved by utilizing feedback control method in a quite short period and both remain in chaotic states. Numerical simulations are used to verify the theoretical analysis using different values of the fractional-order parameter.

37N35Dynamical systems in control
93B52Feedback control
34H10Chaos control (ODE)
34A08Fractional differential equations
34C28Complex behavior, chaotic systems (ODE)
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Pecora, L.; Carroll, T.: Synchronization in chaotic systems, Phys rev lett 64, No. 2, 821-824 (1990) · Zbl 0938.37019
[2] Grove, A. C.: An introduction to the Laplace transform and the z transform, (1991) · Zbl 0731.44001
[3] Momani, S.; Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order, Chaos soliton fract 31, No. 5, 1248-1255 (2007) · Zbl 1137.65450 · doi:10.1016/j.chaos.2005.10.068
[4] Odibat, Zm.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order, Int J nonlinear sci numer simul 7, No. 1, 27-34 (2006)
[5] Ahmad, W.; Sprott, C.: Chaos in fractional-order autonomous nonlinear systems, Chaos soliton fract 16, No. 2, 339-C351 (2003) · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[6] Wajdi, M. Ahmad; Ahmad, M. Harb: On nonlinear control design for autonomous chaotic systems of integer and fractional orders, Chaos soliton fract 18, No. 4, 693-701 (2003) · Zbl 1073.93027 · doi:10.1016/S0960-0779(02)00644-6
[7] Chen, C.; Yau, H.; Peng, C.: Design of extended backstepping sliding mode controller for uncertain chaotic systems, Int J nonlinear sci numer simul 8, No. 2, 137-145 (2007)
[8] Yau, H.; Kuo, C.; Yan, J.: Fuzzy sliding mode control for a class of chaos synchronization with uncertainties, Int J nonlinear sci numer simul 7, No. 3, 333-338 (2006)
[9] Deng, W.; Li, C.: Chaos synchronization of the fractional Lü system, Physica A 353, No. 1-4, 61-72 (2005)
[10] Wang, J.; Zhang, Y.: Designing synchronization schemes for chaotic fractional-order unified systems, Chaos soliton fract 30, No. 5, 1265-1272 (2006) · Zbl 1142.37332 · doi:10.1016/j.chaos.2005.09.027
[11] Hartley TT, Lorenzo CF, Qammar HK. Chaos in a fractional order Chua system, NASA Technical Paper 3543, January 1996.
[12] Li, C.; Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations, Phys A: statist mech appl 341, 55-61 (2004)
[13] Ge, Z.; Ou, C.: Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal, Chaos soliton fract 35, No. 4, 705-717 (2008)
[14] Sun K., Wang X., J.C. Sprott, ”Bifurcations and chaos in fractional-order simplified Lorenz system”, International Journal of Bifurcation and Chaos, Accepted. · Zbl 1193.34005
[15] Li, C.; Chen, G.: Chaos in the fractional order Chen system and its control, Chaos soliton fract 22, No. 3, 549-554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[16] Lu, J.: Chaotic dynamics of the fractional-order Lü system and its synchronization, Phys lett A 354, No. 4, 305-311 (2006)
[17] Ge, Z.; Zhang, A.: Chaos in a modified van der Pol system and in its fractional order systems, Chaos soliton fract 32, No. 5, 1791-1822 (2007)
[18] Ge, Z.; Yi, C.: Chaos in a nonlinear damped Mathieu system in a nano resonator system and in its fractional order systems, Chaos soliton fract 32, No. 1, 42-61 (2007)
[19] Pan, L.; Zhou, W.; Fang, J.; Li, D.: Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control, Commun nonlinear sci numer simulat 15, No. 12, 3754-3762 (2010) · Zbl 1222.34063 · doi:10.1016/j.cnsns.2010.01.025
[20] Lu, J.: Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal, Chaos soliton fract 27, No. 2, 519-525 (2006) · Zbl 1086.94007 · doi:10.1016/j.chaos.2005.04.032
[21] Ge, Z.; Jhuang, Wr.: Chaos control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos soliton fract 33, No. 1, 270-289 (2007) · Zbl 1152.34355 · doi:10.1016/j.chaos.2005.12.040
[22] Butzer, P. L.; Westphal, U.: An introduction to fractional calculus, (2000) · Zbl 0987.26005
[23] Kenneth, S. M.; Bertram, R.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[24] Podlubny, I.: Fractional differential equations, San Diego (CA)[M] (1999) · Zbl 0924.34008
[25] Charef, A.; Sun, H.; Tsao, Y.; Onaral, B.: Fractal system as represented by singularity function, Automat control IEEE trans 37, No. 9, 1465-1470 (1992) · Zbl 0825.58027 · doi:10.1109/9.159595
[26] Zhou, W.; Xu, Y.; Lu, H.; Pan, L.: On dynamics analysis of a new chaotic attractor, Phys lett A 372, No. 36, 5773-5777 (2008) · Zbl 1223.37045 · doi:10.1016/j.physleta.2008.07.032
[27] Wolf, A.; Swift, Jb.; Swinney, Hl.; Vastano, Ja.: Determining Lyapunov exponents from a time series, Physica D 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9