zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite-time chaos control via nonsingular terminal sliding mode control. (English) Zbl 1221.37225
Summary: We consider the nonsingular terminal sliding mode control for chaotic systems with uncertain parameters or disturbances. The switching surface is designed technically to realize fast convergence. The controller derived from such switching surface is nonsingular and it can stabilize the chaotic systems in a finite time. Besides the second-order system and the triangular system, the proposed method can also be applied to a general class of uncertain nonlinear system. Finally, simulation results are presented to illustrate the effectiveness of the design.

MSC:
37N35Dynamical systems in control
93B12Variable structure systems
37D45Strange attractors, chaotic dynamics
34D20Stability of ODE
WorldCat.org
Full Text: DOI
References:
[1] Lu, J.; Wu, X.; Lü, J.: Synchronization of a unified system and the application in secure communication, Phys lett A 305, 365-370 (2002) · Zbl 1005.37012 · doi:10.1016/S0375-9601(02)01497-4
[2] Sugawara, T.; Tachikawa, M.; Tsukamoto, T.: Observation of synchronization in laser chaos, Phys rev lett 72, No. 22, 3502-3505 (1994)
[3] Colet, P.; Roy, R.: Digital communication with synchronization chaotic laser, Opt lett 19, No. 24, 2056-2058 (1994)
[4] Ott, E.; Grebogi, C.; Yorke, J. A.: Using chaos to direct trajectories to targets, Phys rev lett 65, No. 26, 3215-3218 (1990)
[5] Yassen, M. T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design, Phys lett A 360, 582-587 (2007) · Zbl 1236.93086
[6] Cao, J.; Lu, J.: Adaptive synchronization of neural networks with or without time-varying delays, Chaos 16, 013133-1-013133-6 (2006) · Zbl 1144.37331 · doi:10.1063/1.2178448
[7] Jamal, M. Nazzal; Ammar, N. Natsheh: Chaos control using sliding-mode theory, Chaos solitons fract 33, 695-702 (2007)
[8] Wang, H.; Han, Z. Z.; Zhang, W.; Xie, Q. Y.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF, Nonlinear anal: real world appl (2007)
[9] Marat, Rafikov; Manoel, Balthazar Jose: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Commun nonlinear sci numer simul 13, 1246-1255 (2008) · Zbl 1221.93230 · doi:10.1016/j.cnsns.2006.12.011
[10] Yu, X. H.; Man, Z. H.: On finite time convergence terminal sliding modes, Int J control 64, No. 6, 1165-1176 (1996) · Zbl 0864.93068
[11] Man, Z. H.; Yu, X. H.: Terminal sliding mode control of MIMO linear systems, IEEE trans circuits syst: part I 44, No. 6, 1065-1070 (1997)
[12] Lin, C.: Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks, IEEE trans fuzzy syst 14, No. 6, 849-859 (2006)
[13] Wu, Y. Q.; Zong, G. D.: Relay switching controller with finite time tracking for gigid robotic manipulators, Acta automat sinica 31, No. 3, 412-418 (2005)
[14] Hong YG, Yang GU, Linda Bushnell, Hua Wang. Global finite-time stabilization: from state feedback to output feedback. In: Proceedings of the 39th IEEE conference on decision and control, Sydney, Australia, December, 2000. p. 2908 -- 13.
[15] Feng Y, Sun LX, Yu XH. Finite time synchronization of chaotic systems with unmatched uncertainties. In: The 30th annual conference of the IEEE industrial electronics society, Busan Korea; 2004. p. 2911 -- 6.
[16] Khalil, H. K.: Nonlinear systems, (2002) · Zbl 1003.34002
[17] Chen, G. R. Lü Jh; Cheng, D. Z.; Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system, Int J bifurcat chaos 12, No. 12, 2917-2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X