zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy stability of a functional equation deriving from quadratic and additive mappings. (English) Zbl 1221.39037
Summary: We investigate a fuzzy version of stability for the functional equation $f(2x + y) + f(2x - y) + 2f(x) - f(x + y) - f(x - y) - 2f(2x) = 0$ in the sense of {\it A. K. Mirmostafaee} and {\it M. S. Moslehian} [Fuzzy Sets Syst. 159, No. 6, 720--729 (2008; Zbl 1178.46075)].

MSC:
39B82Stability, separation, extension, and related topics
39B72Systems of functional equations and inequalities
WorldCat.org
Full Text: DOI
References:
[1] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York, NY, USA, 1960. · Zbl 0086.24101
[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[3] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64-66, 1950. · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[4] T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. · Zbl 0398.47040 · doi:10.2307/2042795
[5] St. Czerwik, “On the stability of the quadratic mapping in normed spaces,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 62, pp. 59-64, 1992. · Zbl 0779.39003 · doi:10.1007/BF02941618
[6] P. G\uavrut, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431-436, 1994. · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[7] K.-W. Jun, I.-S. Jung, and H.-M. Kim, “Solution and stability of mixed type functional equations,” Journal of Chungcheong Mathematical Society, vol. 22, pp. 815-830, 2009.
[8] G. H. Kim, “On the stability of functional equations with square-symmetric operation,” Mathematical Inequalities & Applications, vol. 4, no. 2, pp. 257-266, 2001. · Zbl 0990.39028
[9] H.-M. Kim, “On the stability problem for a mixed type of quartic and quadratic functional equation,” Journal of Mathematical Analysis and Applications, vol. 324, no. 1, pp. 358-372, 2006. · Zbl 1106.39027 · doi:10.1016/j.jmaa.2005.11.053
[10] Y.-H. Lee, “On the stability of the monomial functional equation,” Bulletin of the Korean Mathematical Society, vol. 45, no. 2, pp. 397-403, 2008. · Zbl 1152.39023 · doi:10.4134/BKMS.2008.45.2.397
[11] Y.-H. Lee and K.-W. Jun, “A generalization of the Hyers-Ulam-Rassias stability of Jensen’s equation,” Journal of Mathematical Analysis and Applications, vol. 238, no. 1, pp. 305-315, 1999. · Zbl 0933.39053 · doi:10.1006/jmaa.1999.6546
[12] Y.-H. Lee and K.-W. Jun, “A generalization of the Hyers-Ulam-Rassias stability of the Pexider equation,” Journal of Mathematical Analysis and Applications, vol. 246, no. 2, pp. 627-638, 2000. · Zbl 0957.39008 · doi:10.1006/jmaa.2000.6832
[13] Y.-H. Lee and K.-W. Jun, “A note on the Hyers-Ulam-Rassias stability of Pexider equation,” Journal of the Korean Mathematical Society, vol. 37, no. 1, pp. 111-124, 2000. · Zbl 0976.39030
[14] Y.-H. Lee and K.-W. Jun, “On the stability of approximately additive mappings,” Proceedings of the American Mathematical Society, vol. 128, no. 5, pp. 1361-1369, 2000. · Zbl 0961.47039 · doi:10.1090/S0002-9939-99-05156-4
[15] F. Skof, “Local properties and approximation of operators,” Rendiconti del Seminario Matematico e Fisico di Milano, vol. 53, p. 113, 1983. · Zbl 0599.39007 · doi:10.1007/BF02924890
[16] A. K. Katsaras, “Fuzzy topological vector spaces. II,” Fuzzy Sets and Systems, vol. 12, no. 2, pp. 143-154, 1984. · Zbl 0555.46006 · doi:10.1016/0165-0114(84)90034-4
[17] T. Bag and S. K. Samanta, “Finite dimensional fuzzy normed linear spaces,” Journal of Fuzzy Mathematics, vol. 11, no. 3, pp. 687-705, 2003. · Zbl 1045.46048
[18] S. C. Cheng and J. N. Mordeson, “Fuzzy linear operators and fuzzy normed linear spaces,” Bulletin of the Calcutta Mathematical Society, vol. 86, no. 5, pp. 429-436, 1994. · Zbl 0829.47063
[19] I. Kramosil and J. Michalek, “Fuzzy metrics and statistical metric spaces,” Kybernetika, vol. 11, no. 5, pp. 336-344, 1975. · Zbl 0319.54002 · eudml:28711
[20] A. K. Mirmostafaee and M. S. Moslehian, “Fuzzy versions of Hyers-Ulam-Rassias theorem,” Fuzzy Sets and Systems, vol. 159, no. 6, pp. 720-729, 2008. · Zbl 1178.46075 · doi:10.1016/j.fss.2007.09.016
[21] A. K. Mirmostafaee and M. S. Moslehian, “Fuzzy almost quadratic functions,” Results in Mathematics, vol. 52, no. 1-2, pp. 161-177, 2008. · Zbl 1157.46048 · doi:10.1007/s00025-007-0278-9
[22] A. Najati and M. B. Moghimi, “Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 337, no. 1, pp. 399-415, 2008. · Zbl 1127.39055 · doi:10.1016/j.jmaa.2007.03.104