zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On uncertainty principles in the finite dimensional setting. (English) Zbl 1221.42018
The aim of this paper is to deal with uncertainty principles in finite-dimensional settings. Usually, an uncertainty principle says that a function and its Fourier transform cannot be both well concentrated. This paper present results of that flavor for unitary operators on $\Bbb C^d$ and then applies those results to the discrete short-time Fourier transform.

MSC:
42B10Fourier type transforms, several variables
26D15Inequalities for sums, series and integrals of real functions
65T50Discrete and fast Fourier transforms (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] N. Alon, J.H. Spencer, The Probabilist Method, second ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000. · Zbl 0996.05001
[2] Bourgain, J.; Tzafriri, L.: Invertibility of ”large” submatrices and applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57, 137-224 (1987) · Zbl 0631.46017 · doi:10.1007/BF02772174
[3] Candès, E.: The restricted isometry property and its implications for compressed sensing, C. R. Acad. sci. Paris sér. I math. 346, 589-592 (2008) · Zbl 1153.94002 · doi:10.1016/j.crma.2008.03.014
[4] Candès, E.; Tao, T.: Decoding by linear programming, IEEE trans. Inform. theory 51, 4203-4215 (2005) · Zbl 1264.94121
[5] Candès, E.; Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies, IEEE trans. Inform. theory 52, 5406-5425 (2006) · Zbl 1309.94033
[6] Candès, E.; Romberg, J.; Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE trans. Inform. theory 52, 489-509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[7] Candès, E.; Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions, Found. comput. Math. 6, 227-254 (2006) · Zbl 1102.94020 · doi:10.1007/s10208-004-0162-x
[8] Delvaux, S.; Van Barel, M.: Rank-deficient submatrices of Kronecker products of Fourier matrices, Linear algebra appl. 426, 349-367 (2007) · Zbl 1124.42008 · doi:10.1016/j.laa.2007.05.009
[9] Delvaux, S.; Van Barel, M.: Rank-deficient submatrices of Fourier matrices, Linear algebra appl. 429, 1587-1605 (2008) · Zbl 1149.42005 · doi:10.1016/j.laa.2008.04.043
[10] Demange, B.: Uncertainty principles for the ambiguity function, J. London math. Soc. 72, No. 2, 717-730 (2005) · Zbl 1090.42004 · doi:10.1112/S0024610705006903
[11] Donoho, D. L.; Huo, X.: Uncertainty principles and ideal atomic decomposition, IEEE trans. Inform. theory 47, 2845-2862 (2001) · Zbl 1019.94503 · doi:10.1109/18.959265
[12] Donoho, D. L.; Stark, P. B.: Uncertainty principles and signal recovery, SIAM J. Appl. math. 49, 906-931 (1989) · Zbl 0689.42001 · doi:10.1137/0149053
[13] Elad, M.; Bruckstein, A. M.: A generalized uncertainty principle and sparse representation in pairs of bases, IEEE trans. Inform. theory 48, 2558-2567 (2002) · Zbl 1062.15001 · doi:10.1109/TIT.2002.801410
[14] Folland, G. B.; Sitaram, A.: The uncertainty principle -- a mathematical survey, J. Fourier anal. Appl. 3, 207-238 (1997) · Zbl 0885.42006 · doi:10.1007/BF02649110
[15] Foucart, S.; Lai, M. J.: Sparsest solutions of underdetermined linear systems via $\ell $q-minimization for 0⩽q⩽1, Appl. comput. Harmon. anal. 26, 395-407 (2009) · Zbl 1171.90014
[16] Gribonval, R.; Nielsen, M.: Sparse representations in unions of base, IEEE trans. Inform. theory 49, 3320-3325 (2003) · Zbl 1286.94032
[17] Gröchenig, K.; Zimmermann, G.: Hardy’s theorem and the short-time Fourier transform of Schwartz functions, J. London math. Soc. 63, No. 2, 205-214 (2001) · Zbl 1106.46021 · doi:10.1112/S0024610700001800
[18] Havin, V.; Jöricke, B.: The uncertainty principle in harmonic analysis, (1994) · Zbl 0827.42001
[19] Herman, M.; Strohmer, T.: High resolution radar via compressed sensing, IEEE trans. Signal process. 57, 2275-2284 (2009)
[20] Howard, S. D.; Calderbank, A. R.; Moran, W.: The finite Heisenberg -- Weyl groups in radar and communication, EURASIP J. Appl. signal process. (2006) · Zbl 1122.94015 · doi:10.1155/ASP/2006/85685
[21] Jaming, Ph.: Inversibilité restreinte, problème de kadison-singer et applications à l’analyse harmonique -d’après J. Bourgain et L. Tzafriri- (sous la direction de M. Deschamps), Publ. math. Orsay 94-24, 71-154 (1994)
[22] Jaming, Ph.: Principe d’incertitude qualitatif et reconstruction de phase pour la transformée de Wigner, C. R. Acad. sci. Paris sér. I math. 327, 249-254 (1998) · Zbl 0931.42006 · doi:10.1016/S0764-4442(98)80141-9
[23] Jaming, Ph.: Nazarov’s uncertainty principle in higher dimension, J. approx. Theory 149, 611-630 (2007) · Zbl 1119.42012
[24] Janssen, A. J. E.M.: Proof of a conjecture on the supports of Wigner distributions, J. Fourier anal. Appl. 4, 723-726 (1998) · Zbl 0924.42009 · doi:10.1007/BF02479675
[25] Krahmer, F.; Pfander, G. E.; Rashkov, P.: Uncertainty in time -- frequency representations on finite abelian groups and applications, Appl. comput. Harmon. anal. 25, 209-225 (2008) · Zbl 1148.43006 · doi:10.1016/j.acha.2007.09.008
[26] Matolcsi, T.; Szucs, J.: Intersection des mesures spectrales conjugées, C. R. Acad. sci. Sér. I math. 277, 841-843 (1973) · Zbl 0266.43002
[27] Meshulam, R.: An uncertainty inequality for finite abelian groups, European J. Combin. 27, 63-67 (2006) · Zbl 1145.43005 · doi:10.1016/j.ejc.2004.07.009
[28] Nazarov, F. L.: Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type (in russian), Algebra i analiz 5, 3-66 (1993) · Zbl 0801.42001
[29] Pfander, G.; Rauhut, H.: Sparsity in time -- frequency representations, J. Fourier anal. Appl. 16, 233-260 (2010) · Zbl 1185.42039 · doi:10.1007/s00041-009-9086-9
[30] Rudelson, M.; Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements, Comm. pure appl. Math. 61, 1025-1045 (2008) · Zbl 1149.94010 · doi:10.1002/cpa.20227
[31] D.A. Spielman, N. Srivastava, An Elementary Proof of the Restricted Invertibility Theorem. Available from: arXiv:0911.1114v3 [math.FA].
[32] Tao, T.: An uncertainty principle for cyclic groups of prime order, Math. res. Lett. 12, 121-127 (2005) · Zbl 1080.42002
[33] A. Terras, Fourier analysis on finite groups and application, in: London Mathematical Society Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999. · Zbl 0928.43001
[34] Tropp, J. A.: The random paving property for uniformly bounded matrices, Studia math. 185, 67-82 (2008) · Zbl 1152.46007 · doi:10.4064/sm185-1-4
[35] Tropp, J. A.: On the linear independence of spikes and sines, J. Fourier anal. Appl. 14, 838-858 (2008) · Zbl 1184.46012 · doi:10.1007/s00041-008-9042-0