The stable rank and connected stable rank for certain non self-adjoint Banach algebras. (English) Zbl 1221.46052

The author determines the topological and connected stable rank of triangular matrix algebras over a unital Banach algebra and of certain nest algebras.


46H99 Topological algebras, normed rings and algebras, Banach algebras
19B10 Stable range conditions
46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
Full Text: Euclid


[1] K. R. Davidson, R. H. Levene, L. W. Marcoux, and H. Radjavi, On the topological stable rank of non-selfadjoint operator algebras , Math. Ann., 341 (2008), 239-253. · Zbl 1147.46030 · doi:10.1007/s00208-007-0180-5
[2] K. R. Davidson and Y. Q. Ji, Topological stable rank of nest algebras , Proc. London Math. Soc. (3), 98 (2009), 652-678. · Zbl 1178.47052 · doi:10.1112/plms/pdn048
[3] N. Elhage Hassan, Rangs stables de certaines extensions , J. London Math. Soc. (2), 52 (1995), 605-624. · Zbl 0857.46036 · doi:10.1112/jlms/52.3.605
[4] R. H. Herman and L. N. Vaserstein, The stable range of \(C^*\)-algebras , Invent. Math., 77 (1984), 553-555. · Zbl 0559.46025 · doi:10.1007/BF01388839
[5] M. A. Rieffel, Dimension and stable rank in the K-theory of \(C^*\)-algebras , Proc. London Math. Soc., 46 (1983), 301-333. · Zbl 0533.46046 · doi:10.1112/plms/s3-46.2.301
[6] M. A. Rieffel, The homotopy groups of the unitary groups of non-commutative tori , J. Operator Theory, 17 (1987), 237-254. · Zbl 0656.46056
[7] T. Sudo, The connected stable rank for Banach \(\ast\)-algebras involving isometries , Asian-European J. Math., 3 (2010), 185-191. · Zbl 1195.46051 · doi:10.1142/S179355711000012X
[8] N. E. Wegge-Olsen, K-theory and \(C^*\)-algebras , Oxford Univ. Press, 1993. · Zbl 0780.46038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.