zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A viscosity of extragradient approximation method for finding equilibrium problems, variational inequalities and fixed point problems for nonexpansive mappings. (English) Zbl 1221.49011
Summary: We investigate the problem for finding the set of solutions for equilibrium problems, the set of solutions of the variational inequalities for $k$-Lipschitz continuous mappings and fixed point problems for nonexpansive mappings in a Hilbert space. We introduce a new viscosity extragradient approximation method which is based on the so-called viscosity approximation method and extragradient method. We show that the sequence converges strongly to a common element of the above three sets under some parameter controlling conditions. Finally, we utilize our results to study some convergence problems for finding the zeros of maximal monotone operators. Our results are generalization and extension of the results of {\it P. Kumam} [Turk. J. Math. 33, No. 1, 85--98 (2009; Zbl 1223.47083)], {\it R. Wangkeeree} [Fixed Point Theory Appl. 2008, Article ID 134148 (2008; Zbl 1170.47051], {\it Y. Yao, Y. C. Liou} and{\it R. Chen} [Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69, No. 5--6, A, 1644--1654 (2008; Zbl 1223.47105)], {\it X. Qin, M. Shang} adn {\it Y. Su} [Nonlinear Anal., Theory Methods Appl. 69, No. 11, A, 3897--3909 (2008; Zbl 1170.47044)], and many others.

MSC:
49J40Variational methods including variational inequalities
47J20Inequalities involving nonlinear operators
47H09Mappings defined by “shrinking” properties
47J25Iterative procedures (nonlinear operator equations)
49L25Viscosity solutions (infinite-dimensional problems)
WorldCat.org
Full Text: DOI
References:
[1] Blum, E.; Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. student. 63, 123-145 (1994) · Zbl 0888.49007
[2] Flam, S. D.; Antipin, A. S.: Equilibrium programming using proximal-link algorithms. Math. program. 78, 29-41 (1997) · Zbl 0890.90150
[3] Kumam, P.: A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping. Nonlinear analysis: hybrid systems 2, No. 4, 1245-1255 (2008) · Zbl 1163.49003
[4] Kumam, P.: A new hybrid iterative method for solution of equilibrium problems and fixed point problems for an inverse strongly monotone operator and a nonexpansive mapping. Journal of applied mathematics and computing 29, No. 1, 263-280 (2009) · Zbl 1220.47102
[5] Moudafi, A.; Thera, M.: Proximal and dynamical approaches to equilibrium problems. Lecture note in economics and mathematical systems 477, 187-201 (1999)
[6] Antipin, A. S.; Vasilev, F. P.; Stukalov, A. S.: A regularized Newton method for solving equilibrium programming problems with an inexactly specified set. Computational mathematics and mathematical physics 47, No. 1 (1931)
[7] Stukalov, A. S.: An extraproximal method for solving equilibrium programming problems in a Hilbert space. Computational mathematics and mathematical physics 46, No. 5, 743761 (2006)
[8] Takahashi, S.; Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. Journal of mathematical analysis and applications 311, 506-515 (2007) · Zbl 1122.47056
[9] Combettes, P. L.; Hirstoaga, S. A.: Equilibrium programming in Hilbert spaces. Journal of nonlinear convex analysis 6, 117-136 (2005) · Zbl 1109.90079
[10] Yao, J. -C.; Chadli, O.: Pseudomonotone complementarity problems and variational inequalities. Handbook of generalized convexity and monotonicity, 501-558 (2005) · Zbl 1106.49020
[11] Zeng, L. C.; Schaible, S.; Yao, J. -C.: Iterative algorithm for generalized set-valued strongly nonlinear mixed variational-like inequalities. Journal of optimization theory applications 124, 725-738 (2005) · Zbl 1067.49007
[12] Kumam, P.: Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space. Turk. J. Math. 33, 85-98 (2009) · Zbl 1223.47083
[13] Li, L.; Song, W.: A hybrid of the extragradient method and proximal point algorithm for inverse strongly monotone operators and maximal monotone operators in Banach spaces. Nonlinear analysis: hybrid systems 1, No. 3, 398-413 (2007) · Zbl 1117.49011
[14] Mann, W. R.: Mean value methods in iteration. Proceedings of the American mathematical society 4, 506-510 (1953) · Zbl 0050.11603
[15] Takahashi, W.; Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. Journal of optimization theory applications 118, 417-428 (2003) · Zbl 1055.47052
[16] Rockafellar, R. T.: On the maximality of sums of nonlinear monotone operators. Transactions of the American mathematical society 149, 75-88 (1970) · Zbl 0222.47017
[17] Marino, G.; Xu, H. -K.: A general iterative method for nonexpansive mappings in Hilbert spaces. Journal of mathematical analysis and applications 318, 43-52 (2006) · Zbl 1095.47038
[18] Yao, Y.; Liou, Y. -C.; Yao, J. -C.: Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings. Fixed point theory and applications (2007) · Zbl 1153.54024
[19] Plubtieng, S.; Punpaeng, R.: A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings. Applied mathematics and computation 197, No. 2, 548-558 (2008) · Zbl 1154.47053
[20] Wangkeeree, R.: An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings. Fixed point theory and applications (2008) · Zbl 1170.47051
[21] Su, Y.; Shang, M.; Qin, X.: An iterative method of solution for equilibrium and optimization problems. Nonlinear analysis (2007) · Zbl 1158.47317
[22] Yao, Y.; Liou, Y. -C.: Iterative algorithms for nonexpansive mapping. Fixed point theory and applications (2008)
[23] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings. Journal of mathematical analysis and applications 298, 279-291 (2004) · Zbl 1061.47060
[24] Osilike, M. O.; Igbokwe, D. I.: Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations. Computers and mathematics with applications 40, 559-567 (2000) · Zbl 0958.47030
[25] Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. Journal of mathematical analysis and applications 305, No. 1, 227-239 (2005) · Zbl 1068.47085
[26] Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM journal on control and optimization 14, No. 5, 877898 (1976) · Zbl 0358.90053
[27] Takahashi, W.: Nonlinear functional analysis. (1988) · Zbl 0647.90052
[28] Tada, A.; Takahashi, W.: Strong convergence theorem for an equilibrium problem and a nonexpansive mapping. Nonlinear analysis and convex analysis, 609-617 (2007) · Zbl 1122.47055
[29] Qin, X.; Shang, M.; Su, Y.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. Nonlinear analysis 69, 3897-3909 (2008) · Zbl 1170.47044