Extending isotopies of planar continua. (English) Zbl 1221.57035

The paper treats the isotopy extension problem for planar continua, i.e. if \(Z\) is a continuum in the complex plane \(\mathbb{C}\) and \(h^t:Z\to \mathbb{C}, t\in [0,1]\) an isotopy starting at the identity, can \(h^t\) be extended to an isotopy of the plane starting at the identity? In order to solve this question the authors consider the plane as a subset of the complex sphere \(\mathbb{C^*} = \mathbb{C} \cup \{\infty\}\). Using known results related to \(\mathbb{C^*},\) improving and adapting appropriate techniques, in Theorem 7.3 of the paper they obtain:
Suppose that \(h^t:Z\to \mathbb{C}\) is an isotopy of a planar continuum \(Z\), which we consider as a subset of the sphere \(\mathbb{C^*}\) with \(h^0= id|Z\). Then there exists an extension to an isotopy \(H^t:\mathbb{C^*}\to \mathbb{C^*}\) such that \(H^0=id|\mathbb{C^*}.\)
To return to the plane \(\mathbb{C}\) let \(U\) denote the component of \(\mathbb{C^*} \setminus Z\) containing the point at infinity. By composing the isotopy \(H^t\) with an isotopy \(K^t\) of the sphere such that \(K^0=id|\mathbb{C^*}\) and \(K^t|\mathbb{C^*}\setminus U=id|\mathbb{C^*}\setminus U,\) and \(K^t(H^t(\infty))=\infty\) for all \(t\in [0,1]\) one obtains:
Suppose that \(h^t:Z\to \mathbb{C}\) is an isotopy of a planar continuum \(Z\subset \mathbb{C}\) with \(h^0= id|Z\). Then there exists an extension to an isotopy \(H^t:\mathbb{C}\to \mathbb{C}\) such that \(H^0=id|\mathbb{C}.\)


57N37 Isotopy and pseudo-isotopy
57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
54C20 Extension of maps
54F15 Continua and generalizations
Full Text: DOI arXiv


[1] J. Aarts, G. Brouwer, and L. G. Oversteegen, ”Centerlines of regions in the sphere,” Topology Appl., vol. 156, iss. 10, pp. 1776-1785, 2009. · Zbl 1173.51007
[2] K. Astala and G. J. Martin, ”Holomorphic motions,” in Papers on Analysis, Jyväskylä: Univ. Jyväskylä, 2001, vol. 83, pp. 27-40. · Zbl 1001.30020
[3] R. Baer, ”Kurventypen auf flächen,” J. Reine Angew. Math., vol. 156, pp. 231-246, 1927. · JFM 53.0547.01
[4] R. Baer, ”Isotopie von kurven auf orientierbaren, geschlossen flächen und ihr zusammenhang mit der topologischen deformation der flächen,” Reine Angew. Math., vol. 159, pp. 101-116, 1928. · JFM 54.0602.05
[5] A. Beck, Continuous Flows in the Plane, New York: Springer-Verlag, 1974. · Zbl 0295.54001
[6] H. Bell, ”On fixed point properties of plane continua,” Trans. Amer. Math. Soc., vol. 128, pp. 539-548, 1967. · Zbl 0173.25402
[7] H. Bell, ”Some topological extensions of plane geometry,” Rev. Colombiana Mat., vol. 9, iss. 3-4, pp. 125-153, 1975. · Zbl 0331.54023
[8] A. Blokh and L. Oversteegen, ”A fixed point theorem for branched covering maps of the plane,” Fund. Math., vol. 206, pp. 77-111, 2009. · Zbl 1197.54058
[9] L. Bers and H. L. Royden, ”Holomorphic families of injections,” Acta Math., vol. 157, iss. 3-4, pp. 259-286, 1986. · Zbl 0619.30027
[10] G. A. Brouwer, ”Green’s functions from a metric point of view,” PhD Thesis , University of Alabama at Birmingham, 2005.
[11] C. Carathéodory, ”Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten,” Math. Ann., vol. 72, iss. 1, pp. 107-144, 1912. · JFM 43.0760.05
[12] R. D. Edwards and R. C. Kirby, ”Deformations of spaces of imbeddings,” Ann. Math., vol. 93, pp. 63-88, 1971. · Zbl 0214.50303
[13] D. B. A. Epstein, ”Curves on \(2\)-manifolds and isotopies,” Acta Math., vol. 115, pp. 83-107, 1966. · Zbl 0136.44605
[14] P. Fabel, ”Completing Artin’s braid group on infinitely many strands,” J. Knot Theory Ramifications, vol. 14, iss. 8, pp. 979-991, 2005. · Zbl 1116.57002
[15] R. J. Fokkink, J. C. Mayer, L. G. Oversteegen, and E. D. Tymchatyn, ”The plane fixed problem,” , preprint , 2008.
[16] S. D. Iliadis, ”Positions of continua on the plane, and fixed points,” Vestnik Moskov. Univ. Ser. I Mat. Meh., vol. 25, iss. 4, pp. 66-70, 1970. · Zbl 0204.31404
[17] R. S. Kulkarni and U. Pinkall, ”A canonical metric for Möbius structures and its applications,” Math. Z., vol. 216, iss. 1, pp. 89-129, 1994. · Zbl 0813.53022
[18] Y. M. Lyubich, ”Some typical properties of the dynamics of rational mappings,” Uspekhi Mat. Nauk, vol. 38, iss. 5(233), pp. 197-198, 1983. · Zbl 0598.58028
[19] J. Milnor, Dynamics in One Complex Variable, Braunschweig: Friedr. Vieweg & Sohn, 1999. · Zbl 0946.30013
[20] R. Mañé, P. Sad, and D. Sullivan, ”On the dynamics of rational maps,” Ann. Sci. École Norm. Sup., vol. 16, iss. 2, pp. 193-217, 1983. · Zbl 0524.58025
[21] L. G. Oversteegen and E. D. Tymchatyn, ”Plane strips and the span of continua. I,” Houston J. Math., vol. 8, iss. 1, pp. 129-142, 1982. · Zbl 0506.54022
[22] C. Pommerenke, Boundary Behaviour of Conformal Maps, New York: Springer-Verlag, 1992, vol. 299. · Zbl 0762.30001
[23] Z. Slodkowski, ”Holomorphic motions and polynomial hulls,” Proc. Amer. Math. Soc., vol. 111, iss. 2, pp. 347-355, 1991. · Zbl 0741.32009
[24] D. P. Sullivan and W. P. Thurston, ”Extending holomorphic motions,” Acta Math., vol. 157, iss. 3-4, pp. 243-257, 1986. · Zbl 0619.30026
[25] W. P. Thurston, ”On the geometry and dynamics of iterated rational maps,” in Complex Dynamics, Schleicher, D. and Selinger, N., Eds., Wellesley, MA: A K Peters, 2009, pp. 3-137. · Zbl 1185.37111
[26] G. C. Wen, Conformal Mappings and Boundary Value Problems, Providence, RI: Amer. Math. Soc., 1992, vol. 106. · Zbl 0778.30011
[27] R. L. Wilder, Topology of Manifolds, Providence, R.I.: Amer. Math. Soc., 1963, vol. 27. · Zbl 0117.16204
[28] G. T. Whyburn, Analytic Topology, New York: Amer. Math. Soc., 1942, vol. 28. · Zbl 0061.39301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.