zbMATH — the first resource for mathematics

The beta Laplace distribution. (English) Zbl 1221.60011
Summary: The Laplace distribution is one of the earliest distributions in probability theory. For the first time, based on this distribution, we propose the so-called beta Laplace distribution, which extends the Laplace distribution. Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters and derive the observed information matrix. The usefulness of the new model is illustrated by means of a real data set.

60E05 Probability distributions: general theory
62E15 Exact distribution theory in statistics
62G30 Order statistics; empirical distribution functions
Mathematica; Ox
Full Text: DOI
[1] Akinsete, A.; Famoye, F.; Lee, C., The beta-Pareto distribution, Statistics, 42, 547-563, (2008) · Zbl 1274.60033
[2] Andrews, D.F.; Bickel, P.J.; Hampel, F.R.; Huber, P.J.; Rogers, W.H.; Tukey, J.W., Robust estimates of location, (1972), Princeton University Press Princeton · Zbl 0254.62001
[3] Bagchi, U.; Hayya, J.C.; Ord, J.K., The Hermite distribution as a model of demand during lead time for slow-moving items, Decision sciences, 14, 447-466, (1983)
[4] Barreto-Souza, W.; Santos, A.; Cordeiro, G.M., The beta generalized exponential distribution, Journal of statistical computation and simulation, 80, 159-172, (2010) · Zbl 1184.62012
[5] Chen, C., Tests for the goodness-of-fit of the Laplace distribution, Communications in statistics – simulation and computation, 1, 159-174, (2002) · Zbl 1081.62528
[6] Chen, G.; Balakrishnan, N., A general purpose approximate goodness-of-fit test, Journal of quality technology, 27, 154-161, (1995)
[7] Cordeiro, G.M.; Lemonte, A.J., The \(\beta\)-birnbaum – saunders distribution: an improved distribution for fatigue life modeling, Computational statistics and data analysis, 55, 1445-1461, (2011) · Zbl 1328.62572
[8] Dadi, M.I.; Marks, R.J., Detector relative efficiencies in the presence of Laplace noise, IEEE transactions on aerospace and electronic systems, 23, 568-582, (1987)
[9] Damsleth, E.; El-Shaarawi, A.H., ARMA models with double-exponentially distributed noise, Journal of the royal statistical society B, 51, 61-69, (1989)
[10] Doornik, J.A., An object-oriented matrix language – ox 4, (2006), Timberlake Consultants Press London
[11] Easterling, R.G., Exponential responses with double exponential measurement error – a model for steam generator inspection, (), 90-110
[12] Eugene, N.; Lee, C.; Famoye, F., Beta-normal distribution and its applications, Communications in statistics – theory and methods, 31, 497-512, (2002) · Zbl 1009.62516
[13] Garvan, F., The Maple book, (2002), Chapman and Hall/CRC London
[14] Hoaglin, D.C.; Mosteller, F.; Tukey, J.W., Understanding robust and exploratory data analysis, (1983), Wiley New York · Zbl 0599.62007
[15] Hsu, D.A., Long-tailed distributions for position errors in navigation, Journal of the royal statistical society C, 28, 62-72, (1979)
[16] Johnson, N.; Kotz, S.; Balakrishnan, N., Continuous univariate distributions – volume 2, (1995), Wiley New York · Zbl 0821.62001
[17] Jones, M.C., Families of distributions arising from distributions of order statistics, Test, 13, 1-43, (2004) · Zbl 1110.62012
[18] Kotz, S.; Kozubowski, T.J.; Podgórski, K., The Laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance, (2001), Birkhäuser Boston · Zbl 0977.62003
[19] Laplace, P.S., Mémoire sur las probabilité des causes par LES èvénemens, Mémoires de mathématique et de physique, 6, 621-656, (1774)
[20] Lee, C.; Famoye, F.; Olumolade, O., Beta-Weibull distribution: some properties and applications to censored data, Journal of modern applied statistical methods, 6, 173-186, (2007)
[21] Manly, B.F.J., Some examples of double exponential fitness functions, Heredity, 36, 229-234, (1976)
[22] Nadarajah, S.; Gupta, A.K., The beta Fréchet distribution, Far east journal of theoretical statistics, 14, 15-24, (2004) · Zbl 1074.62008
[23] Nadarajah, S.; Kotz, S., The beta Gumbel distribution, Mathematical problems in engineering, 10, 323-332, (2004) · Zbl 1068.62012
[24] Nadarajah, S.; Kotz, S., The beta exponential distribution, Reliability engineering and system safety, 91, 689-697, (2006)
[25] Nocedal, J.; Wright, S.J., Numerical optimization, (1999), Springer New York · Zbl 0930.65067
[26] Pescim, R.R.; Demétrio, C.G.B; Cordeiro, G.M.; Ortega, E.M.M.; Urbano, M.R., The beta generalized half-normal distribution, Computational statistics and data analysis, 54, 945-957, (2010) · Zbl 1465.62015
[27] Press, W.H.; Teulosky, S.A.; Vetterling, W.T.; Flannery, B.P., ()
[28] Puig, P.; Stephens, M.A., Tests of fit for the Laplace distribution, with applications, Technometrics, 42, 417-424, (2000) · Zbl 0996.62050
[29] Sigmon, K.; Davis, T.A., MATLAB primer, (2002), Chapman and Hall/CRC · Zbl 1017.93002
[30] Wolfram, S., The Mathematica book, (2003), Cambridge University Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.