×

Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion. (English. French summary) Zbl 1221.60083

From the authors’ abstract: We demonstrate that stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter \(H>\frac12 \) have similar ergodic properties as SDEs driven by standard Brownian motion. The focus in this article is on hypoelliptic systems satisfying Hörmander’s condition. We show that such systems enjoy a suitable version of the strong Feller property and we conclude that under a standard controllability condition they admit a unique stationary solution that is physical in the sense that it does not “look into the future.”
The main technical result required for the analysis is a bound on the moments of the inverse of the Malliavin covariance matrix, conditional on the past of the driving noise.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G10 Stationary stochastic processes
60H07 Stochastic calculus of variations and the Malliavin calculus
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI arXiv EuDML

References:

[1] L. Arnold. Random Dynamical Systems . Springer, Berlin, 1998. · Zbl 0906.34001
[2] F. Baudoin and L. Coutin. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007) 550-574. · Zbl 1119.60043
[3] F. Baudoin and M. Hairer. A version of Hörmander’s theorem for the fractional Brownian motion. Probab. Theory Related Fields 139 (2007) 373-395. · Zbl 1123.60038
[4] J.-M. Bismut. Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete 56 (1981) 469-505. · Zbl 0445.60049
[5] V. I. Bogachev. Gaussian Measures. Mathematical Surveys and Monographs 62 . Amer. Math. Soc., Providence, RI, 1998.
[6] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. · Zbl 1047.60029
[7] G. Da Prato, K. D. Elworthy and J. Zabczyk. Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995) 35-45. · Zbl 0817.60081
[8] G. Da Prato and J. Zabczyk. Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series 229 . Cambridge Univ. Press, Cambridge, 1996. · Zbl 0849.60052
[9] K. D. Elworthy and X.-M. Li. Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 (1994) 252-286. · Zbl 0813.60049
[10] P. K. Friz. Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge Studies in Advanced Mathematics 120 . Cambridge Univ. Press, Cambridge, 2010. · Zbl 1193.60053
[11] M. Hairer. Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33 (2005) 703-758. · Zbl 1071.60045
[12] M. Hairer. Ergodic properties of a class of non-Markovian processes. In Trends in Stochastic Analysis. LMS Lecture Note Series 353 . Cambridge Univ. Press, Cambridge, 2009. · Zbl 1186.60052
[13] M. Hairer and J. C. Mattingly. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 (2006) 993-1032. · Zbl 1130.37038
[14] M. Hairer and J. C. Mattingly. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Preprint, 2009. · Zbl 1228.60072
[15] Y. Hu and D. Nualart. Differential equations driven by Hölder continuous functions of order greater than 1/2. In Stochastic Analysis and Applications 399-413. Abel Symp. 2 . Springer, Berlin, 2007. · Zbl 1144.34038
[16] M. Hairer and A. Ohashi. Ergodic theory for SDEs with extrinsic memory. Ann. Probab. 35 (2007) 1950-1977. · Zbl 1129.60052
[17] L. Hörmander. Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147-171. · Zbl 0156.10701
[18] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. I. In Stochastic Analysis (Katata/Kyoto, 1982) 271-306. North-Holland Math. Library 32 . North-Holland, Amsterdam, 1984. · Zbl 0546.60056
[19] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985) 1-76. · Zbl 0568.60059
[20] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 391-442. · Zbl 0633.60078
[21] T. Lyons and Z. Qian. System Control and Rough Paths . Oxford Univ. Press, Oxford, 2002. · Zbl 1029.93001
[22] P. Malliavin. Stochastic calculus of variations and hypoelliptic operators. In Symp. on Stoch. Diff. Equations, Kyoto 1976 147-171. Wiley, New York, 1978. · Zbl 0411.60060
[23] P. Malliavin. Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften 313 . Springer, Berlin, 1997.
[24] Y. S. Mishura. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics 1929 . Springer, Berlin, 2008. · Zbl 1138.60006
[25] L. Mazliak and I. Nourdin. Optimal control for rough differential equations. Stoch. Dyn. 8 (2008) 23-33. · Zbl 1191.49004
[26] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability . Springer, London, 1993. · Zbl 0925.60001
[27] B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. JSTOR: · Zbl 0179.47801
[28] J. Norris. Simplified Malliavin calculus. In Séminaire de Probabilités, XX, 1984/85 101-130. Lecture Notes in Math. 1204 . Springer, Berlin, 1986. · Zbl 0609.60066
[29] I. Nourdin and T. Simon. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist. Probab. Lett. 76 (2006) 907-912. · Zbl 1091.60008
[30] D. Nualart and B. Saussereau. Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl. 119 (2009) 391-409. · Zbl 1169.60013
[31] D. Nualart. The Malliavin Calculus and Related Topics , 2nd edition. Springer, Berlin, 2006. · Zbl 1099.60003
[32] S. G. Samko, A. A. Kilbas and O. I. Marichev. Fractional Integrals and Derivatives . Gordon and Breach Science Publishers, Yverdon, 1993. · Zbl 0924.44003
[33] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes . Chapman & Hall, New York, 1994. · Zbl 0925.60027
[34] L. C. Young. An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936) 251-282. · Zbl 0016.10404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.