zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hybrid Ishikawa iterative methods for a nonexpansive semigroup in Hilbert space. (English) Zbl 1221.65131
Summary: Based on the Ishikawa iteration method and the hybrid method in mathematical programming, we give two new strong convergence methods for finding a point in the common fixed point set of a nonexpansive semigroup in Hilbert space.

65J15Equations with nonlinear operators (numerical methods)
47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
47H20Semigroups of nonlinear operators
Full Text: DOI
[1] Browder, E. F.: Fixed-point theorems for noncompact mappings in Hilbert spaces, Proc. natl. Acad. sci. USA 53, 1272-1276 (1965) · Zbl 0125.35801 · doi:10.1073/pnas.53.6.1272
[2] Ishikawa, S.: Fixed point by new iteration method, Proc. amer. Math. soc. 44, 147-150 (1974) · Zbl 0286.47036 · doi:10.2307/2039245
[3] Mann, W. R.: Mean value methods in iteration, Proc. amer. Math. soc. 4, 506-510 (1953) · Zbl 0050.11603 · doi:10.2307/2032162
[4] Genel, A.; Lindenstrass, J.: An example concerning fixed points, Israel J. Math. 22, 81-86 (1975) · Zbl 0314.47031 · doi:10.1007/BF02757276
[5] Chidume, C. E.; Mutangadura, S. A.: An example on the Mann iteration method for Lipschitz pseudocontraction, Proc. amer. Math. soc. 129, 2359-2363 (2001) · Zbl 0972.47062 · doi:10.1090/S0002-9939-01-06009-9
[6] Martinez-Yanes, C.; Xu, H. K.: Strong convergence of the CQ method for fixed iteration processes, Nonlinear anal., No. 64, 2400-2411 (2006) · Zbl 1105.47060 · doi:10.1016/j.na.2005.08.018
[7] Nakajo, K.; Takahashi, W.: Strong convergence theorem for nonexpansive mappings and nonexpansive semigroup, J. math. Anal. appl. 279, 372-379 (2003) · Zbl 1035.47048 · doi:10.1016/S0022-247X(02)00458-4
[8] Demarr, R.: Common fixed points for commuting contraction mappings, Pacific J. Math. 13, 1139-1141 (1963) · Zbl 0191.14901
[9] He, H.; Chen, R.: Strong convergence theorems of the CQ method for nonexpansive semigroups, Fpta (2007) · Zbl 1155.47054 · doi:10.1155/2007/59735
[10] Saejung, S.: Strong convergence theorems for nonexpansive semigroups without Bochner integrals, Fpta (2008) · Zbl 1203.47077
[11] Solodov, M. V.; Svaiter, B. F.: Forcing strong convergence of proximal point iterations in Hilbert space, Math. progr. 87, 189-202 (2000) · Zbl 0971.90062 · doi:10.1007/s101079900113
[12] Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. amer. Math. soc. 73, 591-597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[13] Megginson, R. E.: An introduction to Banach space theory, Graduate texts in mathematics 183 (1998) · Zbl 0910.46008
[14] Marino, G.; Xu, H. K.: Weak and strong convergence theorems for stric pseudo-contractions in Hilbert spaces, J. math. Anal. appl. 329, 336-346 (2007) · Zbl 1116.47053 · doi:10.1016/j.jmaa.2006.06.055
[15] Goebel, K.; Kirk, W. A.: Topics in metric fixed point theory, Cambridge studies in advanced math. 28 (1990) · Zbl 0708.47031
[16] Shimizu, T.; Takahashi, W.: Strong convergence to common fixed points of families of nonexpansive mappings, J. math. Anal. appl., No. 211, 71-83 (1997) · Zbl 0883.47075 · doi:10.1006/jmaa.1997.5398
[17] Brezis, H.: Opérateur maximaux monotones, Mathematics studies 5 (1973)