zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. (English) Zbl 1221.65278
Summary: We adopt the homotopy analysis method (HAM) to obtain solutions of linear and nonlinear fractional diffusion and wave equation. The fractional derivative is described in the Caputo sense. Some illustrative examples are presented.

65M99Numerical methods for IVP of PDE
35G15Boundary value problems for linear higher-order PDE
Full Text: DOI
[1] Ayub, M.; Rasheed, A.; Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int J eng sci 41, 2091103 (2003) · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[2] El-Sayed, A. M. A.: Fractional-order diffusion-wave equation, Int J theor phys 35, No. 2, 311-322 (1996) · Zbl 0846.35001 · doi:10.1007/BF02083817
[3] Cang J, Tan Y, Xu H, Liao SJ. Series solutions of non-linear Riccati differential equations with fractional order. Chaos Solitons Fract; in press. · Zbl 1197.34006 · doi:10.1016/j.chaos.2007.04.018
[4] Ginoa, M.; Cerbelli, S.; Roman, H. E.: Fractional diffusion equation and relaxation in complex viscoelastic materials, Physica A 191, 449-453 (1992)
[5] Hayat, T.; Khan, M.; Ayub, M.: On the explicit analytic solutions of an Oldroyd 6-constant fluid, Int J eng sci 42, 12335 (2004) · Zbl 1211.76009 · doi:10.1016/S0020-7225(03)00281-7
[6] Hayat, T.; Khan, M.; Ayub, M.: Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field, J math anal appl 298, 22544 (2004) · Zbl 1067.35074 · doi:10.1016/j.jmaa.2004.05.011
[7] Jafari, H.; Daftardar-Gejji, V.: Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl math comput 180, 488-497 (2006) · Zbl 1102.65135 · doi:10.1016/j.amc.2005.12.031
[8] Jafari, H.; Momani, S.: Solving fractional diffusion and wave equations by modified homotopy perturbation method, Phys lett A 370, 388-396 (2007) · Zbl 1209.65111 · doi:10.1016/j.physleta.2007.05.118
[9] Jafari H, Seifi S, Alipoor A, Zabihi M. An iterative method for solving linear and nonlinear fractional diffusion-wave equation. J Nonlinear Fract Phenom Sci Eng; accepted for publication.
[10] Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University; 1992.
[11] Liao, S. J.: An approximate solution technique which does not depend upon small parameters: a special example, Int J nonlinear mech 30, 37180 (1995) · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[12] Liao, S. J.: An approximate solution technique which does not depend upon small parameters (Part 2): an application in fluid mechanics, Int J nonlinear mech 32, No. 5, 81522 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[13] Liao, S. J.: An explicit totally analytic approximation of Blasius viscous flow problems, Int J non-linear mech 34, No. 4, 75978 (1999) · Zbl 05137896
[14] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[15] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl math comput 147, 499513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[16] Liao, S. J.: Comparison between the homotopy analysis method and homotopy perturbation method, Appl math comput 169, 118694 (2005) · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[17] Liao, S. J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int J heat mass transfer 48, 252939 (2005) · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[18] Liao, S. J.; Pop, I.: Explicit analytic solution for similarity boundary layer equations, Int J heat mass transfer 47, 758 (2004) · Zbl 1045.76008 · doi:10.1016/S0017-9310(03)00405-8
[19] Liao, S.: Homotopy analysis method: A new analytical technique for nonlinear problems, Commun nonlinear sci numer simulat 2, No. 2, 95-100 (1997) · Zbl 0927.65069 · doi:10.1016/S1007-5704(97)90047-2
[20] Luchko, Yu.; Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives, Acta math vietnamica 24, No. 2, 207-233 (1999) · Zbl 0931.44003
[21] Momani, S.: An algorithm for solving the fractional convection diffusion equation with nonlinear source term, Commun nonlinear sci numer simulat 12, No. 7, 1283-1290 (2007) · Zbl 1118.35301 · doi:10.1016/j.cnsns.2005.12.007
[22] Momani, S.: Analytical approximate solution for fractional heat-like and wavelike equations with variable coefficients using the decomposition method, Appl math comput 165, 459-472 (2005) · Zbl 1070.65105 · doi:10.1016/j.amc.2004.06.025
[23] Moustafa, O. L.: On the Cauchy problem for some fractional order partial differential equations, Chaos solitons fract 18, 135-140 (2003) · Zbl 1059.35034 · doi:10.1016/S0960-0779(02)00586-6
[24] Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation, Waves and stability in continuous media, 246-251 (1994)
[25] Mainardi F. Fractional diffusive waves in viscoelastic solids. In: Wegner Jl, Norwood FR, editors, Nonlinear waves in solids, Fairfield; 1995. pp. 93 -- 7.
[26] Mainardi, F.: Fundamental solutions for the fractional diffusion-wave equation, Appl math lett 9, 23-28 (1996) · Zbl 0879.35036 · doi:10.1016/0893-9659(96)00089-4
[27] Agrawal, O. P.: Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear dynam 29, 145-155 (2002) · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[28] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[29] Samko, G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[30] Schneider, W. R.; Wyss, W.: Fractional diffusion and wave equations, J math phys 30, No. 1, 134-144 (1998) · Zbl 0692.45004 · doi:10.1063/1.528578
[31] Tan, Y.; Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation, Commun nonlinear sci numer simulat 13, No. 3, 539-546 (2008) · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[32] Wazwaz, A. M.; Goruis, A.: Exact solution for heat-like and wave-like equations with variable coefficient, Appl math comput 149, 51-59 (2004)
[33] Weitzner, H.; Zaslavsky, G. M.: Some applications of fractional equations, Commun nonlinear sci numer simulat 8, 273-281 (2003) · Zbl 1041.35073 · doi:10.1016/S1007-5704(03)00049-2