zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. (English) Zbl 1221.65281
Summary: In this paper, the homotopy analysis method (HAM) proposed by Liao in 1992 and the homotopy perturbation method (HPM) proposed by He in 1998 are compared through an evolution equation used as the second example in a recent paper by {\it D. D. Ganji, H. Tari} and {\it M. B. Jooybari} [Comput. Math. Appl. 54, No. 7--8, 1018--1027 (2007; Zbl 1141.65384)]. It is found that the HPM is a special case of the HAM when $\hbar=-1$. However, the HPM solution is divergent for all $x$ and $t$ except $t=0$. It is also found that the solution given by the variational iteration method (VIM) is divergent too. On the other hand, using the HAM, one obtains convergent series solutions which agree well with the exact solution. This example illustrates that it is very important to investigate the convergence of approximation series. Otherwise, one might get useless results.

65M99Numerical methods for IVP of PDE
Full Text: DOI
[1] Nayfeh, A. H.: Perturbation methods, (2000) · Zbl 0995.35001
[2] Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys lett A 360, 109-113 (2006) · Zbl 1236.80010
[3] Lyapunov, A. M.: General problem on stability of motion, (1992) · Zbl 0786.70001
[4] Karmishin, A. V.; Zhukov, A. I.; Kolosov, V. G.: Methods of dynamics calculation and testing for thin-walled structures, (1990)
[5] Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994) · Zbl 0802.65122
[6] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput meth appl mech eng 167, 57-68 (1998) · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[7] He, J. H.: Variational iteration method: a kind of nonlinear analytical technique: some examples, Int J non-linear mech 34, 699-708 (1999) · Zbl 05137891
[8] Ganji, D. D.; Tari, H.; Jooybari, M. B.: Variational iteration method and homotopy perturbation method for nonlinear evolution equations, Comput math appl 54, 1018-1027 (2007) · Zbl 1141.65384 · doi:10.1016/j.camwa.2006.12.070
[9] Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis. Shanghai: Shanghai Jiao Tong University; 1992.
[10] Liao, S. J.: An approximate solution technique not depending on small parameters: a special example, Int J non-linear mech 30, 371-380 (1995) · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[11] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[12] Liao, S. J.; Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations, Stud appl math 119, 297-354 (2007)
[13] Liao, S. J.: Notes on the homotopy analysis method: some definitions and theorems, Comm nonlinear sci numer simul 14, 983-997 (2009) · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[14] Bataineh, A. S.; Noorani, M. S. M.; Hashim, I.: Solutions of time-dependent Emden -- Fowler type equations by homotopy analysis method, Phys lett A 371, 72-82 (2007) · Zbl 1209.65104 · doi:10.1016/j.physleta.2007.05.094
[15] Van*gorder, R. A.; Vajravelu, K.: Analytic and numerical solutions to the Lane -- Emden equation, Phys lett A 372, 6060-6065 (2008) · Zbl 1223.85004 · doi:10.1016/j.physleta.2008.08.002
[16] Hayat, T.; Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys lett A 361, 316-322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[17] Sajid, M.; Hayat, T.: Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations, Nonlinear anal (B) 9, 2290-2295 (2008) · Zbl 1156.76436 · doi:10.1016/j.nonrwa.2007.08.007
[18] Song, L.; Zhang, H.: Application of homotopy analysis method to fractional KdV-Burgers -- Kuramoto equation, Phys lett A 367, 88-94 (2007) · Zbl 1209.65115 · doi:10.1016/j.physleta.2007.02.083