zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method. (English) Zbl 1221.65284
Summary: Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are increasingly used in modeling practical superdiffusive problems in fluid flow, finance and other areas of application. This paper presents the analytical solutions of the space fractional diffusion equations by two-step Adomian decomposition method (TSADM). By using initial conditions, the explicit solutions of the equations have been presented in the closed form and then their solutions have been represented graphically. Two examples, the first one is one-dimensional and the second one is two-dimensional fractional diffusion equation, are presented to show the application of the present technique. The solutions obtained by the standard decomposition method have been numerically evaluated and presented in the form of tables and then compared with those obtained by TSADM. The present TSADM performs extremely well in terms of efficiency and simplicity.

MSC:
65M99Numerical methods for IVP of PDE
35K57Reaction-diffusion equations
35A25Other special methods (PDE)
35C05Solutions of PDE in closed form
WorldCat.org
Full Text: DOI
References:
[1] Metzler, R.; Barkai, E.; Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker -- Planck equation approach, Phys rev lett 82, No. 18, 3563-3567 (1999)
[2] Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys rep 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[3] Metzler, R.; Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J phys A 37, R161-R208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[4] Gorenflo, R.; Mainardi, F.; Scalas, E.; Raberto, M.: Fractional calculus and continuous time finance. III. the diffusion limit. Mathematical finance (Konstanz, 2000), Trends math, birkhuser, basel, 171-180 (2001) · Zbl 1138.91444
[5] Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E.: Fractional calculus and continuous-time finance II: The waiting-time distribution, Physica A 287, 468-481 (2000) · Zbl 1138.91444
[6] Scalas, E.; Gorenflo, R.; Mainardi, F.: Fractional calculus and continuous-time finance, Physica A 284, 376-384 (2000)
[7] Raberto, M.; Scalas, E.; Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study, Physica A 314, 749-755 (2002) · Zbl 1001.91033 · doi:10.1016/S0378-4371(02)01048-8
[8] Benson, D. A.; Wheatcraft, S.; Meerschaert, M. M.: Application of a fractional advection -- dispersion equation, Water resour res 36, 1403-1412 (2000)
[9] Baeumer, B.; Meerschaert, M. M.; Benson, D. A.; Wheatcraft, S. W.: Subordinated advection -- dispersion equation for contaminant transport, Water resour res 37, 1543-1550 (2001)
[10] Benson, D. A.; Schumer, R.; Meerschaert, M. M.; Wheatcraft, S. W.: Fractional dispersion, Lévy motions, and the MADE tracer tests, Transport porous med 42, 211-240 (2001)
[11] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Wheatcraft, S. W.: Eulerian derivation of the fractional advection -- dispersion equation, J contam hydrol 48, 9-88 (2001)
[12] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Baeumer, B.: Multiscaling fractional advection -- dispersion equations and their solutions, Water resour res 39, 1022-1032 (2003)
[13] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[14] Mainardi, F.; Pagnini, G.: The weight functions as solutions of the time-fractional diffusion equation, Appl math comput 141, 51-62 (2003) · Zbl 1053.35008 · doi:10.1016/S0096-3003(02)00320-X
[15] Agrawal, O. P.: Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear dyn 29, 145-155 (2002) · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[16] Schneider, W. R.; Wyss, W.: Fractional diffusion and wave equations, J math phys 30, 134-144 (1989) · Zbl 0692.45004 · doi:10.1063/1.528578
[17] Meerschaert, M. M.; Scheffler, H.; Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation, J comput phys 211, 249-261 (2006) · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[18] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H.: A second-order accurate numerical approximation for the fractional diffusion equation, J comput phys 213, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[19] Adomian, G.: Nonlinear stochastic systems theory and applications to physics, (1989) · Zbl 0659.93003
[20] Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994) · Zbl 0802.65122
[21] Adomian, G.: An analytical solution of the stochastic Navier -- Stokes system, Found phys 21, No. 7, 831-843 (1991)
[22] Adomian, G.; Rach, R.: Linear and nonlinear Schrödinger equations, Found phys 21, 983-991 (1991)
[23] Adomian, G.: Solution of physical problems by decomposition, Comp math appl 27, No. 9/10, 145-154 (1994) · Zbl 0803.35020 · doi:10.1016/0898-1221(94)90132-5
[24] Adomian, G.: Solutions of nonlinear PDE, Appl math lett 11, No. 3, 121-123 (1998) · Zbl 0933.65121 · doi:10.1016/S0893-9659(98)00043-3
[25] Abbaoui, K.; Cherruault, Y.: The decomposition method applied to the Cauchy problem, Kybernetes 28, 103-108 (1999) · Zbl 0937.65074 · doi:10.1108/03684929910253261
[26] Kaya, D.; Yokus, A.: A numerical comparison of partial solutions in the decomposition method for linear and nonlinear partial differential equations, Math comp simulat 60, No. 6, 507-512 (2002) · Zbl 1007.65078 · doi:10.1016/S0378-4754(01)00438-4
[27] Wazwaz, A.: A reliable modification of Adomian decomposition method, Appl math comp 102, No. 1, 77-86 (1999) · Zbl 0928.65083 · doi:10.1016/S0096-3003(98)10024-3
[28] Kaya, D.; El-Sayed, S. M.: On a generalized fifth order KdV equations, Phys lett A 310, No. 1, 44-51 (2003) · Zbl 1011.35114 · doi:10.1016/S0375-9601(03)00215-9
[29] Kaya, D.; El-Sayed, S. M.: An application of the decomposition method for the generalized KdV and RLW equations, Chaos soliton fract 17, No. 5, 869-877 (2003) · Zbl 1030.35139 · doi:10.1016/S0960-0779(02)00569-6
[30] Kaya, D.: An explicit and numerical solutions of some fifth-order KdV equation by decomposition method, Appl math comp 144, No. 2 -- 3, 353-363 (2003) · Zbl 1024.65096 · doi:10.1016/S0096-3003(02)00412-5
[31] Kaya, D.: A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation, Appl math comp 149, No. 3, 833-841 (2004) · Zbl 1038.65101 · doi:10.1016/S0096-3003(03)00189-9
[32] George, A. J.; Chakrabarti, A.: The Adomian method applied to some extraordinary differential equations, Appl math lett 8, No. 3, 91-97 (1995) · Zbl 0828.65081 · doi:10.1016/0893-9659(95)00036-P
[33] Arora, H. L.; Abdelwahid, F. I.: Solutions of non-integer order differential equations via the Adomian decomposition method, Appl math lett 6, No. 1, 21-23 (1993) · Zbl 0772.34009 · doi:10.1016/0893-9659(93)90140-I
[34] Shawagfeh, N. T.: The decomposition method for fractional differential equations, J frac calc 16, 27-33 (1999) · Zbl 0956.34004
[35] Shawagfeh, N. T.: Analytical approximate solutions for nonlinear fractional differential equations, Appl math comp 131, 517-529 (2002) · Zbl 1029.34003 · doi:10.1016/S0096-3003(01)00167-9
[36] Ray, S. Saha; Bera, R. K.: Solution of an extraordinary differential equation by Adomian decomposition method, J appl math 4, 331-338 (2004) · Zbl 1080.65069 · doi:10.1155/S1110757X04311010
[37] Ray, S. Saha; Bera, R. K.: Analytical solution of a dynamic system containing fractional derivative of order 1/2 by Adomian decomposition method, Trans ASME J appl mech 72, No. 2, 290-295 (2005) · Zbl 1111.74611 · doi:10.1115/1.1839184
[38] Saharay, S.; Bera, R. K.: An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl math comput 167, No. 1, 561-571 (2005) · Zbl 1082.65562 · doi:10.1016/j.amc.2004.07.020
[39] Ray, S. Saha; Bera, R. K.: Analytical solution of the bagley torvik equation by Adomian decomposition method, Appl math comput 168, No. 1, 398-410 (2005) · Zbl 1109.65072 · doi:10.1016/j.amc.2004.09.006
[40] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[41] Oldham, K. B.; Spanier, J.: The fractional calculus, (1974) · Zbl 0292.26011
[42] Cherruault, Y.: Convergence of Adomian’s method, Kybernetes 18, 31-38 (1989) · Zbl 0697.65051 · doi:10.1108/eb005812
[43] Abbaoui, K.; Cherruault, Y.: Convergence of Adomian’s method applied to differential equations, Comp math appl 28, No. 5, 103-109 (1994) · Zbl 0809.65073 · doi:10.1016/0898-1221(94)00144-8
[44] Abbaoui, K.; Cherruault, Y.: New ideas for proving convergence of decomposition methods, Comp math appl 29, 103-108 (1995) · Zbl 0832.47051 · doi:10.1016/0898-1221(95)00022-Q
[45] Himoun, N.; Abbaoui, K.; Cherruault, Y.: New results of convergence of Adomian’s method, Kybernetes 28, No. 4 -- 5, 423-429 (1999) · Zbl 0938.93019 · doi:10.1108/03684929910267752
[46] Luo, Xing-Guo: A two-step Adomian decomposition method, Appl math comput 170, No. 1, 570-583 (2005) · Zbl 1082.65581 · doi:10.1016/j.amc.2004.12.010
[47] Wolfram, S.: Mathematica for windows, version 5.0, (2003)