zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic, escape and chaotic orbits in the Copenhagen and the $(n + 1)$-body ring problems. (English) Zbl 1221.70015
Summary: We study the use of recent computational techniques in the numerical study of qualitative properties of two degrees of freedom Hamiltonian systems. Two particular problems, the Copenhagen and the $(n + 1)$-body ring problems, are studied by using Chaos Indicators, the Crash Test and by computing the skeleton of symmetric periodic orbits.

MSC:
70F10$n$-body problems
70K55Transition to stochasticity (chaotic behavior)
WorldCat.org
Full Text: DOI
References:
[1] Barrio, R.; Blesa, F.; Serrano, S.: Qualitative analysis of the (n+1)-body ring problem, Chaos soliton fract 36, No. 4, 1067-1088 (2008) · Zbl 1283.70010
[2] Arribas, M.; Elipe, A.: Bifurcations and equilibria in the extended N-body ring problem, Mech res commun 31, No. 1, 1-8 (2004) · Zbl 1073.70010 · doi:10.1016/S0093-6413(03)00086-7
[3] Kalvouridis, T. J.: A planar case of the (n+1)-body problem: the ring problem, Astrophys space sci 260, 309-325 (1998) · Zbl 0943.70008 · doi:10.1023/A:1001739018698
[4] Barrio, R.: Sensitivity tools vs. Poincaré sections, Chaos soliton fract 25, No. 3, 711-726 (2005) · Zbl 1092.37531 · doi:10.1016/j.chaos.2004.11.092
[5] Barrio, R.: Painting chaos: a gallery of sensitivity plots of classical problems, Int J bifur chaos appl sci eng 16, No. 10, 2777-2798 (2006) · Zbl 1185.37069 · doi:10.1142/S021812740601646X
[6] Nagler, J.: Crash test for the restricted three-body problem, Phys rev E (3) 71, No. 2, 026227-11 (2005)
[7] Barrio, R.; Blesa, F.: Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems, Chaos soliton fract (2008) · Zbl 1198.37091
[8] Barrio, R.; Borczyk, W.; Breiter, S.: Spurious structures and chaos indicators, Chaos soliton fract (2007) · Zbl 1198.37038
[9] Barrio, R.; Blesa, F.; Lara, M.: VSVO formulation of the Taylor method for the numerical solution of odes, Comput math appl 50, No. 1 -- 2, 93-111 (2005) · Zbl 1085.65056 · doi:10.1016/j.camwa.2005.02.010
[10] Barrio, R.: Sensitivity analysis of odes/daes using the Taylor series method, SIAM J sci comput, No. 27, 1929-1947 (2006) · Zbl 1108.65077 · doi:10.1137/030601892
[11] Nagler, J.: Crash test for the Copenhagen problem, Phys rev E (3) 69, No. 6, 066218-6 (2004)
[12] Hénon, M.: Exploraton numérique du problème restreint II. Masses égales stabilité des orbites périodiques, Ann astrophys 28, 992-1007 (1965) · Zbl 0151.47502 · http://adsabs.harvard.edu/full/1965AnAp...28..992H
[13] Dullin, H. R.; Wittek, A.: Complete Poincaré sections and tangent sets, J phys A 28, No. 24, 7157-7180 (1995) · Zbl 0900.70218 · doi:10.1088/0305-4470/28/24/015