zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Effects of variable viscosity in a third grade fluid with porous medium: an analytic solution. (English) Zbl 1221.76015
Summary: This study extends the analysis of {\it T. Hayat, S. Asghar} and the first author [Commun. Nonlinear Sci. Numer. Simul. 12, No. 3, 300--313 (2007; Zbl 1102.76003)] in a porous medium by employing modified Darcy’s law. Beside this Reynolds and Vogels models of temperature dependent viscosity are considered. The problem is solved using homotopy analysis method (HAM). Expressions of velocity and temperature profiles are constructed analytically and explained with the help of graphs.

MSC:
76A05Non-Newtonian fluids
76S05Flows in porous media; filtration; seepage
WorldCat.org
Full Text: DOI
References:
[1] Hayat, T.; Ellahi, R.; Asghar, S.: The influence of variable viscosity and viscous dissipation on the non-Newtonian flow: an analytic solution, Commun nonlinear sci numer simul 12, 300-313 (2007) · Zbl 1102.76003 · doi:10.1016/j.cnsns.2005.04.008
[2] Fetecau, C.; Fetecau, C.: Cone and plate flow of a second grade fluid, Acta mech 122, 225-230 (1997) · Zbl 0877.76004 · doi:10.1007/BF01182001
[3] Hayat, T.; Abbas, Z.; Sajid, M.: On the analytic solution of MHD flow of a second grade fluid over a shrinking sheet, ASME J appl mech 74, 1165-1171 (2007)
[4] Hayat, T.; Javed, T.; Sajid, M.: Analytical solution for rotating flow and heat transfer analysis of a third-grade fluid, Acta mech 191, 219-229 (2007) · Zbl 1117.76069 · doi:10.1007/s00707-007-0451-y
[5] Sajid, M.; Hayat, T.; Asghar, S.: Non-similar solution for the axisymmetric flow of a third grade fluid over a radially stretching sheet, Acta mech 189, 193-205 (2007) · Zbl 1117.76006 · doi:10.1007/s00707-006-0430-8
[6] Sajid, M.; Hayat, T.; Asghar, S.: Comparison of the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt, Nonlinear dynam 50, 27-35 (2007) · Zbl 1181.76031 · doi:10.1007/s11071-006-9140-y
[7] Sajid, M.; Hayat, T.; Asghar, S.: Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet, Int J heat mass transfer 50, 1723-1736 (2007) · Zbl 1140.76042 · doi:10.1016/j.ijheatmasstransfer.2006.10.011
[8] Hayat, T.; Abbas, Z.; Sajid, S.; Asghar, S.: The influence of thermal radiation on MHD flow of a second grade fluid, Int J heat mass transfer 50, 931-941 (2007) · Zbl 1124.80325 · doi:10.1016/j.ijheatmasstransfer.2006.08.014
[9] Hayat, T.; Javed, T.: On analytical solution for generalized three-dimensional MHD flow over a porous stretching sheet, Phys lett A 370, 243-250 (2007) · Zbl 1209.76024 · doi:10.1016/j.physleta.2007.05.108
[10] Hayat, T.; Sajid, M.; Ayub, M.: A note on series solution for generalized Couette flow, Commun nonlinear sci numer simul 12, 1481-1487 (2007) · Zbl 1114.76057 · doi:10.1016/j.cnsns.2006.02.009
[11] Hayat, T.; Sajid, M.: Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid, Int J eng sci 45, 393-401 (2007) · Zbl 1213.76137 · doi:10.1016/j.ijengsci.2007.04.009
[12] Sajid, M.; Siddiqui, A. M.; Hayat, T.: Wire coating analysis using MHD Oldroyd 8-constant fluid, Int J eng sci 45, 381-392 (2007)
[13] Hayat, T.; Ahmed, N.; Sajid, S.; Asghar, S.: On the MHD flow of a second grade fluid in a porous channel, Comput math appl 54, 407-414 (2007) · Zbl 1123.76072 · doi:10.1016/j.camwa.2006.12.036
[14] Hayat, T.; Sajid, M.: Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int J heat mass transfer 50, 75-84 (2007) · Zbl 1104.80006 · doi:10.1016/j.ijheatmasstransfer.2006.06.045
[15] Massoudi, M.; Christie, I.: Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe, Int J nonlinear mech 30, 687-699 (1995) · Zbl 0865.76005 · doi:10.1016/0020-7462(95)00031-I
[16] Hayat, T.; Mahomed, F. M.: Note on an exact solution for the pipe flow of a third grade fluid, Acta mech 190, 233-236 (2007) · Zbl 1117.76005 · doi:10.1007/s00707-006-0428-2
[17] Rajagopal, K. R.: On the creeping flow of the second order fluid, J non-Newton fluid mech 15, 239-246 (1984) · Zbl 0568.76015 · doi:10.1016/0377-0257(84)80008-7
[18] Bandelli, R.; Rajagopal, K. R.: Start-up flows of second grade fluids in domains with one finite dimension, Int J nonlinear mech 50, 817-839 (1995) · Zbl 0866.76004 · doi:10.1016/0020-7462(95)00035-6
[19] Rajagopal, K. R.: A note on unsteady unidirectional flows of a non-Newtonian fluid, Int J nonlinear mech 17, 369-373 (1982) · Zbl 0527.76003 · doi:10.1016/0020-7462(82)90006-3
[20] Hayat, T.; Asghar, S.; Siddiqui, A. M.: Periodic unsteady flows of a non-Newtonian fluid, Acta mech 131, 169-175 (1998) · Zbl 0939.76002 · doi:10.1007/BF01177223
[21] Hayat, T.; Asghar, S.; Siddiqui, A. M.: On the moment of a plane disk in a non-Newtonian fluid, Acta mech 136, 125-131 (1999) · Zbl 0934.76003 · doi:10.1007/BF01179252
[22] Hayat, T.; Asghar, S.; Siddiqui, A. M.: Some unsteady unidirectional flows of a non-Newtonian fluids, Int J eng sci 38, 337-346 (2000) · Zbl 1210.76015 · doi:10.1016/S0020-7225(99)00034-8
[23] Rajagopal, K. R.: On boundary conditions for fluids of the differential type, Navier-Stokes equations and related non-linear problems, 273-287 (1995) · Zbl 0846.35107
[24] Ariel, P. D.: Flow of viscoelastic fluids through a porous channel, Int J num meth fluid 17, 605-633 (1993) · Zbl 0792.76004 · doi:10.1002/fld.1650170705
[25] Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D thesis, Shanghai Jiao Tong University 1992.
[26] Liao, S. J.; Campo, A.: Analysis solutions of the temperature distribution in Blasius viscous flow problems, J fluid mech 453, 411-425 (2002) · Zbl 1007.76014 · doi:10.1017/S0022112001007169
[27] Liao, S. J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over stretching sheet, J fluid mech 488, 189-212 (2003) · Zbl 1063.76671 · doi:10.1017/S0022112003004865
[28] Hayat, T.; Javed, T.; Sajid, M.: The influence of Hall current on rotating flow of a third grade fluid in a porous medium, J porous media 10, No. 8, 807-820 (2007)
[29] Liao, S. J.: Beyond perturbation: introduction to homotopy analysis method, (2003)
[30] Liao, S. J.: An analytic approximation of the drag coefficient for the viscous flow past a sphere, Int J nonlinear mech 37, 1-18 (2002) · Zbl 1116.76335 · doi:10.1016/S0020-7462(00)00092-5
[31] Liao, S. J.: An explicit analytic solution to the Thomas-Fermi equation, Appl maths comput 144, 433-444 (2003) · Zbl 1034.34005 · doi:10.1016/S0096-3003(02)00423-X
[32] Liao, S. J.; Cheung, K. F.: Homotopy analysis of nonlinear progressive waves in deep water, J eng math 45, 105-116 (2003) · Zbl 1112.76316 · doi:10.1023/A:1022189509293
[33] Liao, S. J.; Chwang, A. T.: Application of homotopy analysis method in non-linear oscillations, Trans ASME J appl mech 65, 914-922 (1998)
[34] Hayat, T.; Khan, M.; Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech 168, 213-232 (2004) · Zbl 1063.76108 · doi:10.1007/s00707-004-0085-2
[35] Ayub, M.; Rasheed, A.; Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int J eng sci 41, 2091-2103 (2003) · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[36] Liao, S. J.: An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int J nonlinear mech 38, 1173-1183 (2003) · Zbl 05138214
[37] Liao, S. J.; Pop, I.: Explicit analytic solution for similarity boundary layer equations, Int J heat and mass trans 47, 75-85 (2004) · Zbl 1045.76008 · doi:10.1016/S0017-9310(03)00405-8
[38] Fosdick, R. L.; Rajagopal, K. R.: Thermodynamics and stability of fluids of third grade, Proc roy soc London 339, 351-377 (1980) · Zbl 0441.76002 · doi:10.1098/rspa.1980.0005
[39] Tan, W. C.; Masuoka, T.: Stokes first problem for an Oldroyd-B fluid in a porous half space, Phys fluids 17, 023101-023107 (2005) · Zbl 1187.76517 · doi:10.1063/1.1850409
[40] Pakdemirli, M.; Yılbaş, B. S.: Entropy generation for pipe flow of a third grade fluid with vogel model viscosity, Int J nonlinear mech 41, 432-437 (2006) · Zbl 1160.76303 · doi:10.1016/j.ijnonlinmec.2005.09.002