## A general approach to get series solution of non-similarity boundary-layer flows.(English)Zbl 1221.76068

Summary: An analytic method for strongly non-linear problems, namely the homotopy analysis method (HAM), is applied to give convergent series solution of non-similarity boundary-layer flows. As an example, the non-similarity boundary-layer flows over a stretching flat sheet are used to show the validity of this general analytic approach. Without any assumptions of small/large quantities, the corresponding non-linear partial differential equation with variable coefficients is transferred into an infinite number of linear ordinary differential equations with constant coefficients. More importantly, an auxiliary artificial parameter is used to ensure the convergence of the series solution. Different from previous analytic results, our series solutions are convergent and valid for all physical variables in the whole domain of flows. This work illustrates that, by means of the homotopy analysis method, the non-similarity boundary-layer flows can be solved in a similar way like similarity boundary-layer flows. Mathematically, this analytic approach is rather general in principle and can be applied to solve different types of non-linear partial differential equations with variable coefficients in science and engineering.

### MSC:

 76D10 Boundary-layer theory, separation and reattachment, higher-order effects
Full Text:

### References:

 [2] Blasius, H., Grenzschichten in Füssigkeiten mit kleiner Reibung, Z Math Phys, 56, 1-37 (1908) · JFM 39.0803.02 [3] Howarth, L., On the solution of the laminar boundary layer equations, Proc R Soc Lond A, 164, 547-579 (1938) · JFM 64.1452.01 [4] Van Dyke, M., Higher approximations in boundary-layer theory. Part 1: General analysis, J Fluid Mech, 14, 161-177 (1962) [5] Van Dyke, M., Higher approximations in boundary-layer theory. Part 2: Applications to leading edges, J Fluid Mech, 14, 481-495 (1962) · Zbl 0113.41203 [6] Van Dyke, M., Higher approximations in boundary-layer theory. Part 3: Parabola in uniform stream, J Fluid Mech, 19, 145-159 (1964) · Zbl 0121.20702 [7] Van Dyke, M., Higher-order boundary-layer theory, Annu Rev Fluid Mech, 1, 265-292 (1969) [8] Van Dyke, M., Perturbation methods in fluid mechanics (1975), The Parabolic Press: The Parabolic Press Stanford · Zbl 0329.76002 [9] Tani, I., History of boundary-layer theory, Annu Rev Fluid Mech, 9, 87-111 (1977) [10] Schlichting, H.; Gersten, K., Boundary layer theory (2000), Springer: Springer Berlin [11] Sobey, I. J., Introduction to interactive boundary layer theory (2000), Oxford University Press · Zbl 0977.76003 [12] Crane, L., Flow past a stretching plate, Z Angew Math Phys, 21, 645-647 (1970) [13] Banks, W. H.H., Similarity solutions of the boundary-layer equations for a stretching wall, J Mech Theor Appl, 2, 375-392 (1983) · Zbl 0538.76039 [14] Banks, W. H.H.; Zaturska, M. B., Eigensolutions in boundary-layer flow adjectent to a stretching wall, IMA J Appl Math, 36, 263-273 (1986) · Zbl 0619.76011 [15] Grubka, L. J.; Bobba, K. M., Heat transfer characteristics of a continuous stretching surface with variable temperature, ASME J Heat Transfer, 107, 248-250 (1985) [16] Ali, M. E., Heat transfer characteristics of a continuous stretching surface, Wärme und Stoffübertragung, 29, 227-234 (1994) [17] Erickson, L. E.; Fan, L. T.; Fox, V. G., Heat and mass transfer on a moving continuous flat plate with suction or injection, Indust Eng Chem, 5, 19-25 (1966) [18] Gupta, P. S.; Gupta, A. S., Heat and mass transfer on a stretching sheet with suction or blowing, Can J Chem Eng, 55, 744-746 (1977) [19] Chen, C. K.; Char, M. I., Heat and mass transfer on a continuous stretching surface with suction or blowing, J Math Anal Appl, 135, 568-580 (1988) · Zbl 0652.76062 [20] Chaudhary, M. A.; Merkin, J. H.; Pop, I., Similarity solutions in the free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media, Eur J Mech B: Fluids, 14, 217-237 (1995) · Zbl 0835.76100 [21] Elbashbeshy, E. M.A., Heat transfer over a stretching surface with variable surface heat flux, J Phys D: Appl Phys, 31, 1951-1954 (1998) [22] Magyari, E.; Keller, B., Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur J Mech B: Fluids, 19, 109-122 (2000) · Zbl 0976.76021 [23] Görtler, H., Eine neue Reihenentwicklung für laminare Grenzschichten, ZAMM, 32, 270-271 (1952) · Zbl 0046.42004 [24] Wanous, K. J.; Sparrow, E. M., Heat transfer for flow longitudinal to a cylinder with surface mass transfer, J Heat Transfer Trans Ser C, 87, 1, 317-319 (1965) · Zbl 0134.21202 [25] Catherall, D.; Stewartson; Williams, Viscous flow past a flat plate with uniform injection, Proc R Soc A, 284, 370-396 (1965) · Zbl 0142.43702 [26] Sparrow, E. M.; Quack, H., Local non-similarity boundary-layer solutions, AIAA J, 8, 11, 1936-1942 (1970) · Zbl 0219.76032 [27] Sparrow, E. M.; Yu, H. S., Local non-similarity thermal boundary-layer solutions, J Heat Transfer Trans ASME, 328-334 (1971) [28] Massoudi, M., Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge, Int J Non-Linear Mech, 36, 961-976 (2001) · Zbl 1345.76007 [29] Cimpean, D.; Merkin, J. H.; Ingham, D. B., On a free convection problem over a vertical flat surface in a porous medium, Transport Porous, 64, 393-411 (2006) [30] Gorla, R. S.R.; Kumari, M., Non-similar solutions for mixed convection in non-Newtonian fluids along a vertical plate in a porous medium, Transport Porous, 33, 295-307 (1998) [31] Duck, P. W.; Stow, S. R.; Dhanak, M. R., Non-similarity solutions to the corner boundary-layer equations (and the effects of wall transpiration), J Fluid Mech, 400, 125-162 (1999) · Zbl 0951.76022 [32] Sahu, A. K.; Mathur, M. N.; Chaturani, P.; Bharatiya, S. S., Momentum and heat transfer from a continuous moving surface to a power-law fluid, Acta Mech, 142, 119-131 (2000) · Zbl 0962.76006 [33] Banu, N.; Rees, D. A.S., The effect of inertia on vertical free convection boundary-layer flows from a heated surface in porous medium with suction, Int Commun Heat Mass Transfer, 27, 6, 775-783 (2000) [34] Char, M. I.; Lin, J. D.; Chen, H. T., Conjugate mixed convection laminar non-Darcy film condensation along a vertical plate in a porous medium, Int J Eng Sci, 39, 897-912 (2001) · Zbl 1210.76170 [35] Cheng, W. T.; Lin, H. T., Non-similarity solution and correlation of transient heat transfer in laminar boundary layer flow over a wedge, Int J Eng Sci, 40, 5, 531-548 (2002) [36] Chen, C. H., Combined heat and mass transfer in MHD free convection from a vertical surface with Ohmic heating and viscous disserpation, Int J Eng Sci, 42, 699-713 (2004) · Zbl 1211.76141 [37] Roy, S.; Datta, P.; Mahanti, N. C., Non-similar solution of an unsteady mixed convection flow over a vertical cone with suction or injection, Int J Heat Mass Transfer, 50, 181-187 (2007) · Zbl 1104.80008 [38] Liao, S. J., Beyond perturbation: introduction to the homotopy analysis method (2003), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton [39] Liao, S. J., On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J Fluid Mech, 488, 189-212 (2003) · Zbl 1063.76671 [40] Liao, S. J., Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud Appl Math, 117, 3, 2529-2539 (2006) · Zbl 1189.76142 [41] Liao, S. J.; Tan, Y., A general approach to obtain series solutions of nonlinear differential equations, Stud Appl Math, 119, 297-355 (2007) [42] Liao, S. J., Notes on the homotopy analysis method: Some definitions and theorems, Commun Nonlinear Sci Numer Simulat, 14, 983-997 (2009) · Zbl 1221.65126 [43] Liao, S. J.; Pop, I., Explicit analytic solution for similarity boundary layer equations, Int J Heat Mass Transfer, 47, 1, 75-85 (2004) · Zbl 1045.76008 [44] Yamashita, M.; Yabushita, K.; Tsuboi, K., An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J Phys A, 40, 8403-8416 (2007) · Zbl 1331.70041 [45] Bouremel, Y., Explicit series solution for the Glauert-jet problem by means of the homotopy analysis method, Commun Nonlinear Sci Numer Simul, 12, 5, 714-724 (2007) · Zbl 1115.76065 [46] Abbasbandy, S., The application of the homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation, Phys Lett A, 361, 478-483 (2007) · Zbl 1273.65156 [47] Abbasbandy, S., Homotopy analysis method for heat radiation equations, Int Commun Heat Mass Transfer, 34, 380-387 (2007) [48] Hayat, T.; Sajid, M., On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder, Phys Lett A, 361, 316-322 (2007) · Zbl 1170.76307 [49] Hayat, T.; Sajid, M., Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int J Heat Mass Transfer, 50, 75-84 (2007) · Zbl 1104.80006 [50] Allan, F. M., Derivation of the Adomian decomposition method using the homotopy analysis method, Appl Math Comput, 190, 6-14 (2007) · Zbl 1125.65063 [51] Sajid, M.; Hayat, T.; Asghar, S., On the analytic solution of the steady flow of a fourth grade fluid, Phys Lett A, 355, 18-26 (2006) [52] Zhu, S. P., A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield, ANZIAM J, 47, 477-494 (2006) · Zbl 1147.91336 [53] Zhu, S. P., An exact and explicit solution for the valuation of American put options, Quant Finance, 6, 229-242 (2006) · Zbl 1136.91468 [54] Liao, S. J., A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int J Heat Mass Transfer, 48, 12, 2529-2539 (2005) · Zbl 1189.76142 [55] Liao, S. J.; Magyari, E., Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones, ZAMP, 57, 5, 777-792 (2006) · Zbl 1101.76056 [57] Adomian, G., Nonlinear stochastic differential equations, J Math Anal Appl, 55, 441-452 (1976) · Zbl 0351.60053 [58] Adomian, G., Solving frontier problems of physics: the decomposition method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Boston and London · Zbl 0802.65122 [59] Wazwaz, A. M., The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model, Appl Math Comput, 110, 251-264 (2000) · Zbl 1023.65109 [60] Ramos, J. I.; Soler, E., Domain decomposition techniques for reaction-diffusion equations in two-dimensional regions with re-entrant corners, Appl Math Comput, 118, 189-221 (2001) · Zbl 1023.65101 [61] Karmishin, A. V.; Zhukov, A. T.; Kolosov, V. G., Methods of dynamics calculation and testing for thin-walled structures (1990), Mashinostroyenie: Mashinostroyenie Moscow, [in Russian] [62] Awrejcewicz, J.; Andrianov, I. V.; Manevitch, L. I., Asymptotic approaches in nonlinear dynamics (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0910.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.