×

Mixed convective heat and mass transfer in an asymmetric channel with peristalsis. (English) Zbl 1221.76080

Summary: This paper describes the fluid mechanics effects of mixed convective heat and mass transfer in an asymmetric channel with peristalsis. The flow is examined in a wave frame of reference moving with the velocity of the wave. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The momentum, energy and concentration equations have been linearized under long wavelength approximation. The analytical solutions for temperature, concentration, velocity and stream function are obtained. The effects of various parameters such as local temperature Grashof number, local mass Grashof number and geometrical parameters on flow variables have been discussed numerically and explained graphically.

MSC:

76D99 Incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Eytan, O.; Elad, D., Analysis of Intra-uterine fluid motion induced by uterine contractions, Bull Math Biol, 61, 221-238 (1999) · Zbl 1323.92063
[2] Mishra, Manoranjan; Ramachandra Rao, Adabala, Peristaltic transport of a Newtonian fluid in an asymmetric channel, ZAMP, 54, 532-550 (2003) · Zbl 1099.76545
[3] Srinivas, S.; Pushparaj, V., Non-linear peristaltic transport in an inclined asymmetric channel, Commun Nonlinear Sci Numer Simul, 13, 1782-1795 (2008)
[4] Ali, N.; Hayat, T.; Asghar, S., Peristaltic flow of a Maxwell fluid in a channel with compliant walls, Chaos Soliton Fract, 39, 407-416 (2009) · Zbl 1197.76017
[5] Kothandapani, M.; Srinivas, S., Non-linear peristaltic transport of Newtonian fluid in an inclined asymmetric channel through a porous medium, Phys Lett A, 372, 1265-1276 (2008) · Zbl 1217.76105
[6] Hariharan, P.; Seshadri, V.; Banerjee, R. K., Peristaltic transport of non-Newtonian fluid in a diverging tube with different waveforms, Math Comput Model, 48, 998-1017 (2008) · Zbl 1187.76606
[7] Ali, N.; Hayat, T.; Sajid, M., Peristaltic flow of a couple stress fluid in asymmetric channel, Biorheology, 44, 125-138 (2007)
[8] Subba Reddy, M. V.; Ramachandra Rao, A.; Sreenath, S., Peristaltic motion of a power-law fluid in an asymmetric channel I, J Non-linear Mech, 42, 1153-1161 (2007)
[9] Mekheimer, Kh. S., Effect of the induced magnetic field on peristaltic flow of a couple stress fluid, Phys Lett A, 372, 4271-4278 (2008) · Zbl 1221.76231
[10] Canny, M. J.; Phillips, O. M., Quantitative aspects of a theory of translocation, Ann Botany, 27, 379-402 (1963)
[11] Aikman, D. P.; Anderson, W. P., A Quantitative investigation of a peristaltic model for phloem translocation, Ann Botany, 35, 761-772 (1971)
[12] Eldabe, N. T.M.; El-Sayed, M. F.; Ghaly, A. Y.; Sayed, H. M., Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity, Arch Appl Mech, 78, 599-624 (2007) · Zbl 1169.76057
[13] Victor, S. A.; Shah, V. L., Heat transfer to blood flowing in a tube, Biorheology, 12, 361-368 (1975)
[14] Radhakrishnamacharya, G.; Radhakrishna Murthy, V., Heat transfer to peristaltic transport in a non-uniform channel, Def Sci J, 43, 275-280 (1993)
[15] Radhakrishnamacharya, G.; Srinivasulu, Ch., Influence of wall properties on peristaltic transport with heat transfer, CR Mecanique, 335, 369-373 (2007) · Zbl 1144.76067
[16] Vajravelu, K.; Radhakrishnamacharya, G.; Radhakrishnamurty, V., Peristaltic flow and heat transfer in a vertical porous annulus, with long-wavelength approximation, Int J Non-linear Mech, 42, 754-759 (2007) · Zbl 1200.76192
[17] Srinivas, S.; Kothandapani, M., Peristaltic transport in an asymmetric channel with heat transfer – a note, Int Commun Heat Mass Transfer, 35, 514-522 (2008) · Zbl 1217.76105
[18] Kothandapani, M.; Srinivas, S., On the influence of wall properties in the MHD peristaltic transport with heat transfer and porous medium, Phys Lett A, 372, 4586-4591 (2008) · Zbl 1221.76044
[19] Mekheimer, Kh. S.; Abd elmaboud, Y., The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope, Phys Lett A, 372, 1657-1665 (2008) · Zbl 1217.76106
[20] Hayat, T.; Qureshi, M. U.; Hussain, Q., Effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a porous space, Appl Math Model, 33, 862-1873 (2009) · Zbl 1205.76254
[21] Nadeem, S.; Akbar, N. S., Influence of heat transfer on a peristaltic transport of Herschel-Bulkley fluid in a non-uniform inclined tube, Commun Nonlinear Sci Numer Simul, 14, 4100-4113 (2009) · Zbl 1221.76269
[22] Nadeem, S.; Hayat, T.; Akbar, N. S.; Malik, M. Y., On the influence of heat transfer in peristalsis with variable viscosity, Int J Heat Mass Transfer, 52, 4722-4730 (2009) · Zbl 1176.80030
[23] Srinivas, S.; Gayathri, R., Peristaltic transport of a Newtonian fluid in a vertical asymmetric channel with heat transfer and porous medium, Appl Math Comput, 215, 185-196 (2009) · Zbl 1172.76051
[24] Srinivas, S.; Gayathri, R.; Kothandapani, M., The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport, Comput Phys Commun, 180, 2115-2122 (2009) · Zbl 1197.76157
[25] Srinivas, S.; Kothandapani, M., The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls, Appl Math Comput, 213, 197-208 (2009) · Zbl 1165.76052
[26] Mekheimer, Kh. S.; Husseny, S. Z.A.; Abd Elmaboud, Y., Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel, Numer Meth Partial Differential Equations, 26, 747-770 (2009) · Zbl 1267.76108
[27] Nadeem, S.; Akram, Safia, Heat transfer in a peristaltic flow of MHD fluid with partial slip, Commun Nonlinear Sci Numer Simul, 15, 312-321 (2010) · Zbl 1221.76232
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.