zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Heat transfer analysis of unsteady boundary layer flow by homotopy analysis method. (English) Zbl 1221.76152
Summary: We aim to present complete analytic solution to the unsteady heat transfer flow of an incompressible viscous fluid over a permeable plane wall. The flow is started due to an impulsively stretching porous plate. Homotopy analysis method (HAM) has been used to get accurate and complete analytic solution. The solution is uniformly valid for all time $\tau \in [0, \infty $) throughout the spatial domain $\eta \in [0, \infty $). The accuracy of the present results is shown by giving a comparison between the present results and the results already present in the literature. This comparison proves the validity and accuracy of our present results. Finally, the effects of different parameters on temperature distribution are discussed through graphs.

MSC:
76M25Other numerical methods (fluid mechanics)
76D10Boundary-layer theory, separation and reattachment, etc. (incompressible viscous fluids)
WorldCat.org
Full Text: DOI
References:
[1] Sakiadis, B. C.: Boundary layer behavior on continuous solid surface. I. boundary layer equations for two-dimensional and axisymmetric flow, Aiche J 7, 26-28 (1961)
[2] Crane, L. J.: Flow past a stretching plate, Z angew math phys 21, 645-647 (1970)
[3] Andersson, H. I.: MHD flow of a viscoelastic fluid past a stretching surface, Acta mech 95, 227-230 (1992) · Zbl 0753.76192 · doi:10.1007/BF01170814
[4] Chaudhary, M. A.; Merkin, J. H.; Pop, I.: Similarity solutions in the free convection boundary layer flows adjacent to vertical permeable surface in porous media, Eur J mech B/fluids 14, 217-237 (1995) · Zbl 0835.76100
[5] Troy, W. C.; Ii, E. A. Overman; Eremont-Rout, G. B.; Keener, J. P.: Uniqueness of flow of second order fluid past a stretching sheet, Q appl math 44, 753-755 (1987) · Zbl 0613.76006
[6] Xu, H.; Liao, S. J.: Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate, J non-Newtonian fluid mech 129, 46-55 (2005) · Zbl 1195.76069 · doi:10.1016/j.jnnfm.2005.05.005
[7] Tsou, F. K.; Sparrow, E. M.; Goldstein, R. J.: Flow and heat transfer in the boundary layer on a continuous moving surface, Int J heat mass transfer 10, 219-235 (1967)
[8] Gupta, P. S.; Gupta, A. S.: Heat and mass transfer on a stretching sheet with suction or blowing, Can J chem eng 55, 744-746 (1977)
[9] Chen, C. K.; Char, M.: Heat transfer of a continuous stretching surface with suction or blowing, J math anal appl 135, 568-580 (1988) · Zbl 0652.76062 · doi:10.1016/0022-247X(88)90172-2
[10] Dandapat, B. S.; Gupta, A. S.: Flow and heat transfer in a viscoelastic fluid over a stretching sheet, Int J nonlinear mech 24, 215-219 (1989) · Zbl 0693.76015 · doi:10.1016/0020-7462(89)90040-1
[11] Dutta, B. K.: Heat transfer from stretching sheet with uniform suction and blowing, Acta mech 78, 255-262 (1989) · Zbl 0687.76097 · doi:10.1007/BF01179221
[12] Rollin, D.; Vajravelu, K.: Heat transfer in a second order fluid over a continuous stretching surface, Acta mech 89, 167-178 (1991) · Zbl 0753.76017 · doi:10.1007/BF01171253
[13] Ali, M. E.: Heat transfer characteristics of a continuous stretching surface, Wärme stoffübertrag 29, 227-234 (1994)
[14] Hall, M. G.: The boundary layer over an impulsively started flat plate, Proc R soc London, ser A 310, 401-414 (1969) · Zbl 0182.28403 · doi:10.1098/rspa.1969.0083
[15] Nazar, N.; Amin, N.; Pop, I.: Unsteady boundary layer flow due to stretching surface in a rotating fluid, Mech res commun 31, 121-128 (2004) · Zbl 1053.76017 · doi:10.1016/j.mechrescom.2003.09.004
[16] Pop, I.; Na, T. Y.: Unsteady flow past a stretching sheet, Mech res commun 23, 413-422 (1996) · Zbl 0893.76017 · doi:10.1016/0093-6413(96)00040-7
[17] Seshadri, R.; Sreeshylan, N.; Nath, G.: Unsteady mixed convection flow in the stagnation region of a heated vertical plate due to impulsive motion, Int J heat mass transfer 45, 1345-1352 (2002) · Zbl 1121.76394 · doi:10.1016/S0017-9310(01)00228-9
[18] Stewartson, K.: On the impulsive motion of a flat plate in a viscous fluid (part I), Q J mech 4, 182-198 (1951) · Zbl 0043.19101 · doi:10.1093/qjmam/4.2.182
[19] Stewartson, K.: On the impulsive motion of a flat plate in a viscous fluid (part II), Q J mech 22, 143-152 (1973) · Zbl 0295.76020 · doi:10.1093/qjmam/26.2.143
[20] Wang, C. Y.; Du, G.; Miklavcic, M.; Chang, C. C.: Impulsive stretching of a surface in a viscous fluid, SIAM J appl math 57, 1-14 (1997) · Zbl 0869.76013 · doi:10.1137/S0036139995282050
[21] William, J. C.; Rhyne, T. H.: Boundary layer developed on a wedge impulsively set into motion, SIAM J appl math 38, 215-224 (1980) · Zbl 0443.76039 · doi:10.1137/0138019
[22] Dennis, S. C. R.: The motion of viscous fluid past an impulsively started semi-infinite flat plate, J inst math appl 10, 105-117 (1972) · Zbl 0267.76025 · doi:10.1093/imamat/10.1.105
[23] Liao, S. J.: An analytic solution of unsteady boundary layer flows caused by an impulsively stretching plate, Commun nonlinear sci numer simul 11, 326-339 (2006) · Zbl 1078.76022 · doi:10.1016/j.cnsns.2004.09.004
[24] Ali A, Mehmood A. Homotopy analysis of unsteady boundary layer flow adjacent to permeable stretching surface in a porous medium. Commun NonLinear Sci Numer Simul, in press, doi:10.1016/j.cnsns.2006.03.008. · Zbl 1155.35408
[25] Watkins, C. B.: Heat transfer in the boundary layer over an impulsively stretching flat plate, J heat transfer 97, 282-484 (1975)
[26] Blasius, H.: Grenzschichten in flüssigkeiten mit klwiner reibung, Z math phys 56, 1-37 (1908) · Zbl 39.0803.02
[27] Goldstein, G.; Rosenhead, L.: Boundary layer growth, Proc camb phil soc 32, 392-401 (1936) · Zbl 62.0985.01 · doi:10.1017/S0305004100019101
[28] Hilton, P. J.: An introduction to homotopy theory, (1953) · Zbl 0051.40302
[29] Sen, S.: Topology and geometry for physicists, (1983) · Zbl 0529.53001
[30] Liao, S. J.: Beyond perturbation: introduction to homotopy analysis method, (2003)
[31] Liao, S. J.: A uniformly valid analytical solution of 2D viscous flow past a semi infinite flat plate, J fluid mech 385, 101-128 (1999) · Zbl 0931.76017 · doi:10.1017/S0022112099004292
[32] Liao, S. J.: An explicit totally analytic approximate solution for Blasius viscous flow problems, Int J nonlinear mech 34, 759-778 (1999) · Zbl 05137896
[33] Liao, S. J.: An analytic approximation of the drag coefficient for the viscous flow past a sphere, Int J nonlinear mech 37, 1-18 (2002) · Zbl 1116.76335 · doi:10.1016/S0020-7462(00)00092-5
[34] Liao, S. J.; Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems, J fluid mech 453, 411-425 (2002) · Zbl 1007.76014 · doi:10.1017/S0022112001007169
[35] Liao, S. J.; Cheung, K. F.: Homotopy analysis of nonlinear progressive waves in deep water, J eng math 45, No. 2, 105-116 (2003) · Zbl 1112.76316 · doi:10.1023/A:1022189509293
[36] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl math comput 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[37] Liao, S. J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluid over a stretching sheet, J fluid mech 488, 189-212 (2003) · Zbl 1063.76671 · doi:10.1017/S0022112003004865
[38] Li, S.; Liao, S. J.: An analytic approach to solve multiple solutions of a strongly nonlinear problem, Appl math comp 169, No. 2, 854-865 (2005) · Zbl 1151.35354 · doi:10.1016/j.amc.2004.09.066
[39] Allan, F. M.; Syam, M. I.: On the analytic solution of the nonhomogeneous Blasius problem, J comput appl math 182, 362-371 (2005) · Zbl 1071.65108 · doi:10.1016/j.cam.2004.12.017
[40] Sun, Q.: Solving the Klein -- Gordon equation by means of homotopy analysis method, Appl math comput 169, No. 1, 355-365 (2005) · Zbl 1078.35105 · doi:10.1016/j.amc.2004.09.056
[41] Wang, C.; Wu, Y.; Wu, W.: Solving nonlinear periodic wave problem with the homotopy analysis method, Wave motion 41, No. 4, 329-337 (2005) · Zbl 1189.35293 · doi:10.1016/j.wavemoti.2004.08.002
[42] Xu, H.: An explicit analytic solution for free convection about a vertical flat plate embedded in a porous media by means of homotopy analysis method, Appl math comput 158, 433-443 (2004) · Zbl 1058.76064 · doi:10.1016/j.amc.2003.08.102